阿里巴巴菜鸟级数据产品经理半年回顾总结篇
干货教程:如何绘制业务流程图(二)
干货教程:如何绘制业务流程图(一)
技术贴:如何在数据库中秘密地查询隐私数据
攻略教程:信息图(infographic)是怎么做出来的?
分析师一定要看!用数据讲故事的五个步骤
技术篇:怎样玩转千万级别的数据?
北漂书生:大数据时代SEO数据如何搜集和分析
干货,从十大问题重新认识并读懂互联网
相似图片搜索、算法、识别的原理解析(下)
相似图片搜索、算法、识别的原理解析(上)
制作信息图时请遵循这10条原则
提高表格可读性的一些技巧,适用于Excel、PPT等数据报表
实用教程:如何让Excel图表更具“商务气质”?
一张数据信息图是这样制作完成的
菜鸟读财报,如何从上市公司财报中挖情报?
北大数据分析老鸟写给学弟们一封信
如何一步一步制作出高品质数据信息图?
总结:海量数据分析处理的十个方法
【实战经验】数据分析师如何了解老板真正想法?
零售业数据分析那些事儿
数据分析时l常用电子表格公式【大全】
用数据来告诉你 上市公司财报的秘密
这12个数据能 帮你搞定淘宝店铺
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(四)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(三)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(二)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(一)
淘宝网店从激活到挽留,4步走玩转数据营销
文案怎样写才有意思、不空洞、打动人?
入门级扫盲贴:数据分析的步骤有哪些?
关系即数据,论社交媒体的关系转换
数据的力量,苹果教你用数据鄙视竞争对手
谁说文科生不能做数据分析?数据分析入行→技能提升→优势
产品运营数据分析——SPSS数据分组案例
如何追踪iPhone和iPad等移动设备的用户行为数据?
阿里巴巴中国站:用户满意度指标权重计算方法
广告中的AdNetwork、AdExchange、DSP、SSP、RTB和DMP是什么?
信息图制作教程:关于数值的表现
为什么大数据会如此轰动?(值得深度的文章)
多图技术贴:深入浅出解析大数据平台架构
面板数据分析中标准误的估计修正——根据Peterson (2009)的归纳
财务官、投资人、CIO看过来:给企业数据定价
推荐系统中常用算法 以及优点缺点对比
探索Weotta搜索引擎背后的大数据技术
如何识别虚假数据?
为什么我们像驯化小狗那样驯化算法
程序员必须知道的10大基础实用算法及其讲解
电子商务:最影响转化率的九大要素
如何迅速成为一名数据分析师?
想从事大数据、海量数据处理相关的工作,如何自学打基础?
如何用亚马逊弹性MapReduce分析大数据?
译文:机器学习算法基础知识
给hadoop新手的一封信:Hadoop入门自学及对就业的帮助
从入门到精通,我是这样学习算法的
小商家,从老客户身上获取的数据才更有意义
13页PPT讲述:大数据下网站数据分析应用
40页PPT详解:京东大数据基础构架与创新应用
67页PPT解密搜索引擎背后的大技术:知识图谱,大数据语义链接的基石
营销洞察力——10个营销度量指标
技术篇:前端数据之美如何展示?
董飞:美国大数据工程师面试攻略【PPT】
easel:如何制作好的信息图——来自专家的顶级技巧
大数据实操:以3D打印机为例,如何知道卖点有没有市场需求?
大数据建模 需要了解的九大形式
用户画像数据建模方法
从规划开始,公司or企业如何入手和实施大数据?
干货:商品信息数据分析和展现系统的设计与开发
高手教你用Excel制作百度迁徙数据地图
50篇干货:淘宝店/电子商务如何玩转数据分析?
精华索引:大数据实际应用案例50篇
验证最小化可行产品 (MVP) 的 15 种方法
干货:数据分析师的完整知识结构
大数据技术Hadoop面试题,看看你能答对多少?答案在后面
用SPSS做数据分析?先弄懂SPSS的基础知识吧
怎样做出优秀的扁平化设计风格PPT? 扁平化PPT设计手册#3
解答│做大数据过程中遇到的13个问题
40页PPT│社交网络发展的新动力:大数据与众包
以Amazon、豆瓣网为例,探索推荐引擎内部的秘密#1
怎样做出优秀的扁平化设计风格PPT?#2
怎样做出优秀的扁平化设计风格PPT?#1
36页PPT│大数据分析关键技术在腾讯的应用服务创新
如何丰满地做SWOT分析?
【35页PPT】TalkingData研发副总阎志涛:移动互联网大数据处理系统架构
27页PPT|以珍爱网为例,如何构建有业务价值的数据分析系统?
国外数据新闻资源分享
21页PPT重磅发布:Mariana——腾讯深度学习平台的进展与应用
从0到100——知乎架构变迁史
PPT解读:百度大数据质量保障方案探索
45页PPT|大数据环境下实现一个O2O通用推荐引擎的实践
从数据看豆瓣兴衰
深度学习系列:解密最接近人脑的智能学习机器——深度学习及并行化实现(四)
重磅推荐:129页PPT讲述移动时代创业黄金法则 via:腾讯企鹅智酷
重磅推荐:大数据工程师飞林沙的年终总结&算法数据的思考
OpenKN——网络大数据时代的知识计算引擎
大数据下城市计算的典型应用
技术贴:大数据告诉你,如何给微信公众号文章取标题?
你的QQ暴露了你的心——QQ大数据及其应用介绍PPT
如何从企业报表看企业的生存能力?
实用的大数据技巧合集
技术帝揭秘:充电宝是如何盗取你的个人隐私的?
重磅!50页PPT揭秘腾讯大数据平台与推荐应用架构
原创教程:饼图之复合饼图与双层饼图(1)
PPT:大数据时代的设计特点——不了解这个你做不了今天的设计
教程贴:如何用方程式写春联?
原创教程:如何用Excel制作简易动态对比图
深度译文:机器学习那些事
教程帖:数学之美——手把手教你用Excel画心(动态图)
董老师走进斯坦福,聊聊硅谷创业公司和大数据的事儿(附课件PPT下载)
【限时】年度钜献,108个大数据文档PDF开放下载
董飞专栏:大数据入门——大数据相关技术、Hadoop生态、LinkedIn内部实战
亿级用户下的新浪微博平台架构
一张图了解磁盘里的数据结构
浅析数据化设计思维在阿里系产品的应用
美团推荐算法实践
一个P2P创业公司有哪些部门,都是做什么的?
一个P2P平台的详细运营框架是怎样的?
机器学习中的算法——决策树模型组合之随机森林与GBDT
神经网络简史
58页PPT看懂互联网趋势,大数据/物联网/云计算/4G都有了
广点通背后的大数据技术秘密——大规模主题模型建模及其在腾讯业务中的应用(附PPT)
微信红包之CBA实践PPT——移动互联网海量访问系统设计
一文读懂机器学习,大数据/自然语言处理/算法全有了……
搜狐新闻客户端的背后大数据技术原理——推荐系统(PPT)
原创教程:用Excel做动态双层饼图
半小时读懂PMP私有广告交易市场
怎样分析样本调研数据(译)
PPT:支付宝背后的大数据技术——DataLab、Higo的实践及应用
大数据技术人员的工具包——开源大数据处理工具list(限时下载)
计算机视觉:随机森林算法在人体识别中的应用
24页PPT:机器学习——支持向量机SVM简介(附下载)
互联网高手教你如何搜集你想要的信息
深度:对地观测大数据处理、挑战与思考
原创教程:用Excel做饼图之复合饼图与双层饼图(2)
移动大数据时代: 无线网络的挑战与机遇(附pdf下载)
Excel使用技巧——25招必学秘技
【年度热门】加上这些 Excel 技能点,秒杀众人(多图)
原创教程:用Excel做纵向折线图
知识图谱——机器大脑中的知识库
何明科专栏:用数据化的方式解析投资条款
DT时代,如何用大数据分析创造商业价值(23页PPT)
MIT牛人梳理脉络详解宏伟现代数据体系
你的老婆是怎么算出来的?揭秘佳缘用户推荐系统
飞林沙:商品推荐算法&推荐解释
PPT:如何成为真正的数据架构师?(附下载)
开源大数据查询分析引擎现状
董飞专栏:打造数据产品必知秘籍
译文:如何做强大又漂亮的信息图
如何使用Amazon Machine Learning构建机器学习预测模型
如何运用数据协助货架管理(内附26张PPT)
SVM算法
主流大数据系统在后台的层次角色及数据流向
PPT:阿里全息大数据构建与应用
人脸识别技术大总结——Face Detection & Alignment
教程:用Excel制作成对条形图
易观智库:大数据下的用户分析及用户画像(18页PPT附下载)
技术向:如何设计企业级大数据分析平台?
电商数据分析基础指标体系
IBM SPSS Modeler 决策树之银行行销预测应用分析
拓扑数据分析与机器学习的相互促进
基于 R 语言和 SPSS 的决策树算法介绍及应用
用php做爬虫 百万级别知乎用户数据爬取与分析
另类新浪微博基本数据采集方法
以10万+阅读的文章为例 教你做微信公众号的运营数据分析
破解数据三大难题:变现?交易?隐私?
微店的大数据平台建设实践与探讨
阿里巴巴PPT:大数据基础建议及产品应用之道
基于社会媒体的预测技术
人工智能简史
技巧:演讲中怎样用数据说话
马云和小贝选谁做老公?写给非数据人的数据世界入门指南
掘金大数据产业链:上游资源+中游技术+下游应用
原创教程:手把手教你用Excel做多层折线图
销售分析:如何从数据指标发现背后的故事
如何一步步从数据产品菜鸟走到骨干数据产品
也来谈谈微博的用户画像
行走在网格之间:微博用户关系模型
如何拍出和明星一样美爆的自拍照?斯坦福大学用卷积神经网络建模告诉你
运营商如何玩转大数据? 浙江移动云计算和大数据实践(PPT附下载)
大数据分析的集中化之路 建设银行大数据应用实践PPT
腾讯防刷负责人:基于用户画像大数据的电商防刷架构
创业提案的逻辑
友盟分享 | 移动大数据平台架构思想以及实践经验
寻路推荐 豆瓣推荐系统实践之路
“小数据”的统计学
重磅!8大策略让你对抗机器学习数据集里的不均衡数据
小团队撬动大数据——当当推荐团队的机器学习实践
微博推荐架构的演进
科普文 手把手教你微信公众号数据分析
信息图制作的六个注意点
【权利的游戏】剧透新玩法:情理之中?意料之外
推荐系统(Recommender System)的技术基础
核心算法 谷歌如何从网络的大海里捞到针
Quora数据科学家和机器学习工程师是如何合作的
阿里巴巴PPT:大数据下的数据安全
数据建模那点事儿
全民拥抱Docker云–Lhotse系统经验分享
实时股票分析系统的架构与算法
架构师必看 京东咚咚架构演进
什么叫对数据敏感?怎样做数据分析?
推荐系统基础知识储备
刘德寰:数据科学的整合与细分 数据科学的七个危险趋势(视频)
实际工作中,如何做简单的数据分析?
分布式前置机器学习在威胁情报中的应用(附PPT下载)
数据科学 怎样进行大数据的入门级学习?
扛住100亿次请求 如何做一个“有把握”的春晚红包系统?(PPT下载)
从 LinkedIn 的数据处理机制学习数据架构
大数据会如何改变管理咨询公司(I)
优秀大数据GitHub项目一览
生硬的数字和数据新闻:这么近,那么远
经典大数据架构案例:酷狗音乐的大数据平台重构(长文)
揭秘中兴大数据在银行领域的系统部署
基于大数据的用户画像构建(理论篇)
【R】支持向量机模型实现
数据图处处有陷阱?五个例子教你辨真伪
如何用R绘制地图
你确定你真的懂用户画像?
数据模型需要多少训练数据?
【接地气】01 数据报表的颜色怎么配
游戏价值和数据分析新思路
【R】异常值检测
快的打车架构实践
豆瓣还是朋友圈:大数据、新方法和日常问
PPT数据图表,怎么做才好看?
大道至简的数据体系构建方法论
数据的误区及自身业务
新浪微博的用户画像是怎样构建的?
面试干货!21个必知数据科学面试题和答案part1(1-11)
易观智库:中国大数据产业生态图谱2016(附下载)
Airbnb的数据基础架构
50PB海量数据排序,谷歌是这么做的
大数据时代工程师如何应对–今日头条走进硅谷技术讲座
D3.js教学记(下)
D3.js教学记(上)
飞林沙:企业级服务公司如何赚钱?只有平台级产品才有大数据的理论
一个母婴电子商务网站的大数据平台及机器学习实践
7大板块 组成数据分析师的完整知识结构
干货:SaaS领域如何分析收入增长?
学术 | 词嵌入的类比特性有实用意义吗?
6个用好大数据的秘诀
一个数据库外行眼中的微信优化 (附专家补充)
大数据调研,如何实现快全准?
数据大师Olivier Grisel给志向高远的数据科学家的指引
数据堂肖永红:数据交易的是使用权或数据的增值,而不是数据本身(PPT附下载)
淘宝商品详情平台化思考与实践
刘译璟:百分点大数据理念和实践(图文+PPT下载)
如何快速搞定一份看起来还不错的演示文档?
【BABY夜谈大数据】决策树
数据驱动设计:数据处理流程、分析方法和实战案例
美图数据总监:Facebook的法宝,我们在产品中怎么用?
树的内核:量化树结构化数据之间的相似性
拿到用户数据之后,LinkedIn怎么赚钱?
GrowingIO张溪梦:增长黑客的核心 企业应该重视产品留存率(附PPT下载)
[译]Airbnb是如何使用数据理解用户旅行体验的?
微博推荐数据服务代理: hyper_proxy的设计和实现
星图数据谷熠:消费领域DaaS 大数据重构未来商业游戏规则(附PPT下载)
鲍忠铁:TalkingData大数据技术与应用实践(PPT下载)
【干货教材】数据分析VS业务分析需求
九枝兰专访:数字营销的核心—企业如何使用数据管理平台(DMP)进行精准营销
我们的应用系统是如何支撑千万级别用户的
R应用空间数据科学
Excel进行高级数据分析(上)
Excel进行高级数据分析(下)
国内各大互联网公司2.0版技术站点收集
网站数据分析思路导图
大数据分析报表设计开发要素
大数据需要的12个工具 推荐
YARN/MRv2 Resource Manager深入剖析—NM管理
YARN/MRv2 Resource Manager深入剖析—RMApp状态机分析
Hadoop 1.0与Hadoop 2.0资源管理方案对比
Hadoop 2.0中单点故障解决方案总结
Hadoop 2.0 (YARN)中的安全机制概述
Hadoop 新特性、改进、优化和Bug分析系列1:YARN-378
Hadoop 新特性、改进、优化和Bug分析系列2:YARN-45
Hadoop 新特性、改进、优化和Bug分析系列3:YARN-392
Hadoop版本选择探讨
探究提高Hadoop稳定性与性能的方法
《Effective C++》读书笔记(第一部分)
Hadoop分布式环境下的数据抽样
Hadoop计算能力调度器算法解析
如何编写Hadoop调度器
数据结构之红黑树
Hadoop pipes设计原理
《C++ Primer plus》学习笔记之”类”
《C++ Primer plus》学习笔记之”类继承”
《C++ Primer plus》学习笔记之”C++中的代码重用”
《C++ Primer plus》学习笔记之”异常”
《C++ Primer plus》学习笔记之”RTTI”
Hadoop pipes编程
Hadoop Streaming高级编程
《C++ Primer plus》学习笔记之”标准模板库”
《C++ Primer plus》学习笔记之”输入输出库”
Linux Shell 命令总结
算法之图搜索算法(一)
awk使用总结
素数判定算法
《C++ Primer plus》学习笔记之“函数探幽”
使用Thrift RPC编写程序
如何在Hadoop上编写MapReduce程序
怎样从10亿查询词找出出现频率最高的10个

全民拥抱Docker云–Lhotse系统经验分享

于2017-04-01由小牛君创建

分享到:


Docker

前言

“只要站在风口,猪也能飞起来”,这碗心灵鸡汤不知道激励了多少英雄豪杰踏上寻风口之路。而现如今,Docker这阵龙卷风呼啸来袭,更让众人生起迎风而上、直冲云霄的欲望。为了找到这风口,数据平台部开始全面拥抱Docker,基于多年的大数据集群管理经验,倾力打造DockerOnGaia云平台(简称Gaia云),并动员将数平自身的核心系统Lhotse, Hermes, Hive, TRE, TDBank等全面接入Gaia云。

Lhotse系统作为先锋部队,经过一段时间的改造-验证-灰度,目前现网已经完全接入、稳定运营。本文旨在分享Lhotse接入Gaia云的一些实践经验,抛砖引玉,期待更多的系统加入队伍,一起在Docker云中探索前行。

有关Docker的八个令人难以置信的事实

Docker发布容器安全白皮书,内容涉及概念、原理、优化、实践等方面

背景介绍

Lhotse是一个大数据任务调度系统,从架构上看是典型的Master-Agent分布式架构,如下图所示,作为调度核心的Base统筹分配任务,交由对应类型的Runner执行:

Docker

到目前为止,Lhotse线上支持68种Runner,分别对应68种不同的任务类型,集群总机器数将近200台。面对这种复杂多样的系统环境,Lhotse接入Gaia云的核心诉求是自动化,通过自动化来降低系统管理复杂度、提高运维效率。自动化运维可以总结为两点:

  1. 机器操作取代人工操作——将复杂枯燥的工作(比如资源分配、程序部署)交给云平台处理。
  2. 通用实现取代重复实现——云平台将一些通用性的基础工作(比如进程监控、自动拉起)抽象成标准化服务,不必重复造轮子。

除了自动化之外,Gaia云带来的另一个核心点是透明化。它在应用的不同阶段有不同的含义:

  1. 在应用部署阶段,指的是机器集群的透明化。集群规模、机器分布、机器规格等因素对用户来说都是透明的,成群的服务器被Gaia封装成了一台超级计算机。
  2. 在应用运行阶段,指的是实例状态/资源使用/历史事件/系统日志的透明化。通过Gaia封装的API或者portal页面,应用的一切运行动态尽在掌握,透明公开。

下面我们将分别从部署、调度、容错、灰度升级、扩缩容及服务发现六个纬度,来讨论Gaia云如何为Lhotse带来自动化与透明化。

部署

Lhotse部署遇到的最大难点在于,每个类型的Runner所依赖的运行环境都有差异。例如,Pig Runner需要机器上预装PigClient、Hadoop,而Compute Runner需要预装PLC。极端的情况是,68种Runner对应68种不同的运行环境,要在200台机器里交叉部署,并且保证各个运行环境完整一致、相互不受影响,这对运维来说是极大的挑战。

对症下药,Gaia云给我们开出Docker这一药方,带来了如下功效:

  • 环境一致:将软件运行环境(包括程序包、软件依赖、配置文件等)镜像化后,无论在哪台机器运行,只要镜像相同,容器启动后的运行环境总是一致的。
  • 环境隔离:在同一台机器运行的多个容器,其运行环境(比如,软件版本与配置)相互隔离、不受干扰。
  • 版本管理:每次软件升级可重新构建镜像,通过镜像tag来管理标注不同的版本,方便灰度、回滚。
  • 快速部署:将软件部署到新的机器,仅需获取镜像这一步操作,无需拷贝、安装、配置等一系列过程。

现在,Lhotse的部署流程已经完全Docker化:我们将每个Base/Runner及其运行环境build成一个Docker镜像push到Gaia云的Registry(docker.oa.com);每次启动Base/Runner容器时,Gaia自动从Registry pull最新的镜像。整个部署过程如下图所示

Docker

调度

有了自动化部署,我们可以方便地将Base/Runner发布到集群的任意机器。但接下来的问题是,选择哪台机器在什么时候运行哪个程序——这是调度要解决的问题。

以前,Lhotse集群的调度都是人工静态处理,资源分配粒度只能到机器级别。这导致调度工作量大,资源利用率却不高。如下两图分别展示了各个Runner机器的CPU与内存利用率(横坐标表示Runner类型编号,纵坐标表示利用率数值):

Docker

 

现在,得益于Gaia云强大的调度能力,Lhotse已经告别了人工资源分配的时代,完全实现调度的自动化。Gaia的调度能力主要体现在两个方面:

  1. 资源分配粒度精细到CPU与内存级别。Lhotse可以根据每个Runner的资源需求来设定具体的CPU个数、内存值。目前,Gaia正在规划支持磁盘、网络带宽等其他资源,实现更精细化的调度。
  2. 集群公平地与其他租户共享(租户可以是不同的系统,也可以是同一个系统内的不同模块)。目前,Lhotse与Hermes系统共享集群,如下图所示,在Gaia中通过树形队列来抽象租户层次:Lhotse与Hermes作为顶级租户,根据它们不同的资源需求(Lhotse偏向CPU密集,Hermes偏向memory密集)按比例瓜分集群资源。在Lhotse租户内部,Base租户与Runner租户根据同样的调配逻辑来瓜分Lhotse的资源。这种层级化的多租户资源调配,既实现了资源的最大化利用,也保证了资源共享的公平性、可控性。

Docker

容错

如前文所言,Lhotse的Runner多达68种,任何一个Runner出错,都有可能影响大批的调度任务。因此,对于每个Runner的监控及出错处理至关重要。

以前,Lhotse通过自定义脚本来监控Runner进程,在发现错误的情况下自动重启或拉起。这种方式存在两点弊端:一是监控脚本本身也需要维护;二是只能做本机重启,无法跨机重试,对于机器挂掉的情况无能为力。

现在,借助Gaia云的自动容错机制,Lhotse从单机容错上升为集群容错,主要体现在两个层面:

  1. 自动重试,包括本地重试和跨机重试。Gaia云对于机器宕机、进程异常退出、OutOfMemory等异常都可以做到自动重试告警,且重试次数可以自行设定,本地重试优先于跨机重试。对于有本地上下文信息的Runner,可以设定较高的本地重试次数,以尽量保证效率。
  2. 自动屏蔽,即黑名单机制。当机器失败达到预设的次数,将被推上黑名单,在一定的时间内对调度屏蔽,以尽量降低出错的影响,且对业务来说是透明的。

灰度升级

为了保证任务高并发和系统高可用,Lhotse每个Base/Runner应用需要运行多个实例,在Gaia云中分别由Applicaiton和Instance来抽象:向Gaia提交Application时,可以指定Docker镜像、Instance个数以及其他相关配置,如下图表示了一个Runner应用的部署抽象:

Docker
在这种部署/运行模型下,对应用做灰度升级非常方便,只需选择新版本的Docker镜像,reload待升级的Instance:

Docker
既然可以将v1.0的实例reload成v2.0,当然也可以将v2.0的实例reload成v1.0。前者是升级,后者是回退。得益于Docker的镜像管理特性,应用在Gaia云中的升级与回退本质上是同类的操作。

扩缩容

按需弹性分配资源是云计算的核心理念,扩缩容自然成为云平台的标配特性之一。在Gaia云中,扩缩容一个应用非常方便,只需选择相应的Docker镜像与实例个数,rampup待扩缩容的Application:

Docker

在实际运维中,Lhotse已经多次通过Gaia来扩容Runner,得益于Docker带来的快速部署/启动能力,可以轻松实现秒级扩容。

目前,尽管扩缩容过程是自动化执行的,但操作还需要人工进行触发。实际上,作为一个任务调度系统,Lhotse任务负载的时间分布实际上是有规律、可预估的(通过监控数据发现,有相当一部分Runner的任务负载都在某种程度上遵循着二八定律,即有20%的时间处于高峰期,承受成倍于其他时间的负载)。下面两图分别展示了两种Runner连续三天的任务负载分布,可以看到,负载高峰通常是在凌晨某个时段。

Docker

因此,Lhotse扩缩容是可以基于时间/负载等因素来自动触发的。Gaia云根据业务系统的需求,正在规划自动扩缩容的方案,后续Lhotse将保持跟进,第一时间验证测试。

服务发现

从前文的架构图上可以看到,Lhotse内部最基本的通讯路径是——Runner向Base上报心跳。在静态分配资源时代,Runner通过配置文件写死IP来发现Base。这种方式在动态分配资源的Gaia云中显然是不可行的,需要新的服务发现机制。它要满足两个需求:

  1. 自动注册/更新地址——当服务实例发生迁移或者新的服务实例部署时,需要对地址列表做自动更新。
  2. 自动负载均衡——当有服务有多个实例时,需要自动将访问请求分配到某一个实例。

Gaia云为此采纳了基于“Etcd-Confd-HAProxy”的服务发现架构:Etcd作为服务地址的存储中心,HAProxy作为服务访问的代理(负载均衡)中心,Confd则是连接前两者的纽带,实现地址列表的自动更新。基于这种服务发现机制,Runner发现Base的过程如下图所示:

Docker

总结

本文分享了Lhotse系统接入Gaia云,实现自动化运维的实践经验: 通过部署、调度、扩缩容自动化,释放了人工运维的压力;通过容错、灰度升级、服务发现自动化,避免了重复造轮子。

当然,天下没有免费的午餐,要享受Gaia云带来的自动化,对于老的系统可能会有一定的改造成本。比如,Lhotse在迁移过程中对代码做了全面梳理,把所有写死IP的代码做了改造。不过,Lhotse的经验表明,这样的系统改造基本不涉及关键模块(比如数据存储、组件通讯、任务执行等),工作量相对不大。另外值得一提的是,在接入过程中,Gaia云根据业务系统的特点不断地演进平台特性,尽可能地降低老系统的迁移成本。

作为第一个抵达风口的“猪”,Lhotse乘风而起,扶摇直上云端里,吹响了全民拥抱Docker云的号角,并且会继续探索前行,为大部队点灯开道。与此同时,我们也期望Gaia云持续优化完善,提供舒适的云环境,让我们沉浸其中、欲罢不能。

via:腾讯大数据

End.