阿里巴巴菜鸟级数据产品经理半年回顾总结篇
干货教程:如何绘制业务流程图(二)
干货教程:如何绘制业务流程图(一)
技术贴:如何在数据库中秘密地查询隐私数据
攻略教程:信息图(infographic)是怎么做出来的?
分析师一定要看!用数据讲故事的五个步骤
技术篇:怎样玩转千万级别的数据?
北漂书生:大数据时代SEO数据如何搜集和分析
干货,从十大问题重新认识并读懂互联网
相似图片搜索、算法、识别的原理解析(下)
相似图片搜索、算法、识别的原理解析(上)
制作信息图时请遵循这10条原则
提高表格可读性的一些技巧,适用于Excel、PPT等数据报表
实用教程:如何让Excel图表更具“商务气质”?
一张数据信息图是这样制作完成的
菜鸟读财报,如何从上市公司财报中挖情报?
北大数据分析老鸟写给学弟们一封信
如何一步一步制作出高品质数据信息图?
总结:海量数据分析处理的十个方法
【实战经验】数据分析师如何了解老板真正想法?
零售业数据分析那些事儿
数据分析时l常用电子表格公式【大全】
用数据来告诉你 上市公司财报的秘密
这12个数据能 帮你搞定淘宝店铺
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(四)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(三)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(二)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(一)
淘宝网店从激活到挽留,4步走玩转数据营销
文案怎样写才有意思、不空洞、打动人?
入门级扫盲贴:数据分析的步骤有哪些?
关系即数据,论社交媒体的关系转换
数据的力量,苹果教你用数据鄙视竞争对手
谁说文科生不能做数据分析?数据分析入行→技能提升→优势
产品运营数据分析——SPSS数据分组案例
如何追踪iPhone和iPad等移动设备的用户行为数据?
阿里巴巴中国站:用户满意度指标权重计算方法
广告中的AdNetwork、AdExchange、DSP、SSP、RTB和DMP是什么?
信息图制作教程:关于数值的表现
为什么大数据会如此轰动?(值得深度的文章)
多图技术贴:深入浅出解析大数据平台架构
面板数据分析中标准误的估计修正——根据Peterson (2009)的归纳
财务官、投资人、CIO看过来:给企业数据定价
推荐系统中常用算法 以及优点缺点对比
探索Weotta搜索引擎背后的大数据技术
如何识别虚假数据?
为什么我们像驯化小狗那样驯化算法
程序员必须知道的10大基础实用算法及其讲解
电子商务:最影响转化率的九大要素
如何迅速成为一名数据分析师?
想从事大数据、海量数据处理相关的工作,如何自学打基础?
如何用亚马逊弹性MapReduce分析大数据?
译文:机器学习算法基础知识
给hadoop新手的一封信:Hadoop入门自学及对就业的帮助
从入门到精通,我是这样学习算法的
小商家,从老客户身上获取的数据才更有意义
13页PPT讲述:大数据下网站数据分析应用
40页PPT详解:京东大数据基础构架与创新应用
67页PPT解密搜索引擎背后的大技术:知识图谱,大数据语义链接的基石
营销洞察力——10个营销度量指标
技术篇:前端数据之美如何展示?
董飞:美国大数据工程师面试攻略【PPT】
easel:如何制作好的信息图——来自专家的顶级技巧
大数据实操:以3D打印机为例,如何知道卖点有没有市场需求?
大数据建模 需要了解的九大形式
用户画像数据建模方法
从规划开始,公司or企业如何入手和实施大数据?
干货:商品信息数据分析和展现系统的设计与开发
高手教你用Excel制作百度迁徙数据地图
50篇干货:淘宝店/电子商务如何玩转数据分析?
精华索引:大数据实际应用案例50篇
验证最小化可行产品 (MVP) 的 15 种方法
干货:数据分析师的完整知识结构
大数据技术Hadoop面试题,看看你能答对多少?答案在后面
用SPSS做数据分析?先弄懂SPSS的基础知识吧
怎样做出优秀的扁平化设计风格PPT? 扁平化PPT设计手册#3
解答│做大数据过程中遇到的13个问题
40页PPT│社交网络发展的新动力:大数据与众包
以Amazon、豆瓣网为例,探索推荐引擎内部的秘密#1
怎样做出优秀的扁平化设计风格PPT?#2
怎样做出优秀的扁平化设计风格PPT?#1
36页PPT│大数据分析关键技术在腾讯的应用服务创新
如何丰满地做SWOT分析?
【35页PPT】TalkingData研发副总阎志涛:移动互联网大数据处理系统架构
27页PPT|以珍爱网为例,如何构建有业务价值的数据分析系统?
国外数据新闻资源分享
21页PPT重磅发布:Mariana——腾讯深度学习平台的进展与应用
从0到100——知乎架构变迁史
PPT解读:百度大数据质量保障方案探索
45页PPT|大数据环境下实现一个O2O通用推荐引擎的实践
从数据看豆瓣兴衰
深度学习系列:解密最接近人脑的智能学习机器——深度学习及并行化实现(四)
重磅推荐:129页PPT讲述移动时代创业黄金法则 via:腾讯企鹅智酷
重磅推荐:大数据工程师飞林沙的年终总结&算法数据的思考
OpenKN——网络大数据时代的知识计算引擎
大数据下城市计算的典型应用
技术贴:大数据告诉你,如何给微信公众号文章取标题?
你的QQ暴露了你的心——QQ大数据及其应用介绍PPT
如何从企业报表看企业的生存能力?
实用的大数据技巧合集
技术帝揭秘:充电宝是如何盗取你的个人隐私的?
重磅!50页PPT揭秘腾讯大数据平台与推荐应用架构
原创教程:饼图之复合饼图与双层饼图(1)
PPT:大数据时代的设计特点——不了解这个你做不了今天的设计
教程贴:如何用方程式写春联?
原创教程:如何用Excel制作简易动态对比图
深度译文:机器学习那些事
教程帖:数学之美——手把手教你用Excel画心(动态图)
董老师走进斯坦福,聊聊硅谷创业公司和大数据的事儿(附课件PPT下载)
【限时】年度钜献,108个大数据文档PDF开放下载
董飞专栏:大数据入门——大数据相关技术、Hadoop生态、LinkedIn内部实战
亿级用户下的新浪微博平台架构
一张图了解磁盘里的数据结构
浅析数据化设计思维在阿里系产品的应用
美团推荐算法实践
一个P2P创业公司有哪些部门,都是做什么的?
一个P2P平台的详细运营框架是怎样的?
机器学习中的算法——决策树模型组合之随机森林与GBDT
神经网络简史
58页PPT看懂互联网趋势,大数据/物联网/云计算/4G都有了
广点通背后的大数据技术秘密——大规模主题模型建模及其在腾讯业务中的应用(附PPT)
微信红包之CBA实践PPT——移动互联网海量访问系统设计
一文读懂机器学习,大数据/自然语言处理/算法全有了……
搜狐新闻客户端的背后大数据技术原理——推荐系统(PPT)
原创教程:用Excel做动态双层饼图
半小时读懂PMP私有广告交易市场
怎样分析样本调研数据(译)
PPT:支付宝背后的大数据技术——DataLab、Higo的实践及应用
大数据技术人员的工具包——开源大数据处理工具list(限时下载)
计算机视觉:随机森林算法在人体识别中的应用
24页PPT:机器学习——支持向量机SVM简介(附下载)
互联网高手教你如何搜集你想要的信息
深度:对地观测大数据处理、挑战与思考
原创教程:用Excel做饼图之复合饼图与双层饼图(2)
移动大数据时代: 无线网络的挑战与机遇(附pdf下载)
Excel使用技巧——25招必学秘技
【年度热门】加上这些 Excel 技能点,秒杀众人(多图)
原创教程:用Excel做纵向折线图
知识图谱——机器大脑中的知识库
何明科专栏:用数据化的方式解析投资条款
DT时代,如何用大数据分析创造商业价值(23页PPT)
MIT牛人梳理脉络详解宏伟现代数据体系
你的老婆是怎么算出来的?揭秘佳缘用户推荐系统
飞林沙:商品推荐算法&推荐解释
PPT:如何成为真正的数据架构师?(附下载)
开源大数据查询分析引擎现状
董飞专栏:打造数据产品必知秘籍
译文:如何做强大又漂亮的信息图
如何使用Amazon Machine Learning构建机器学习预测模型
如何运用数据协助货架管理(内附26张PPT)
SVM算法
主流大数据系统在后台的层次角色及数据流向
PPT:阿里全息大数据构建与应用
人脸识别技术大总结——Face Detection & Alignment
教程:用Excel制作成对条形图
易观智库:大数据下的用户分析及用户画像(18页PPT附下载)
技术向:如何设计企业级大数据分析平台?
电商数据分析基础指标体系
IBM SPSS Modeler 决策树之银行行销预测应用分析
拓扑数据分析与机器学习的相互促进
基于 R 语言和 SPSS 的决策树算法介绍及应用
用php做爬虫 百万级别知乎用户数据爬取与分析
另类新浪微博基本数据采集方法
以10万+阅读的文章为例 教你做微信公众号的运营数据分析
破解数据三大难题:变现?交易?隐私?
微店的大数据平台建设实践与探讨
阿里巴巴PPT:大数据基础建议及产品应用之道
基于社会媒体的预测技术
人工智能简史
技巧:演讲中怎样用数据说话
马云和小贝选谁做老公?写给非数据人的数据世界入门指南
掘金大数据产业链:上游资源+中游技术+下游应用
原创教程:手把手教你用Excel做多层折线图
销售分析:如何从数据指标发现背后的故事
如何一步步从数据产品菜鸟走到骨干数据产品
也来谈谈微博的用户画像
行走在网格之间:微博用户关系模型
如何拍出和明星一样美爆的自拍照?斯坦福大学用卷积神经网络建模告诉你
运营商如何玩转大数据? 浙江移动云计算和大数据实践(PPT附下载)
大数据分析的集中化之路 建设银行大数据应用实践PPT
腾讯防刷负责人:基于用户画像大数据的电商防刷架构
创业提案的逻辑
友盟分享 | 移动大数据平台架构思想以及实践经验
寻路推荐 豆瓣推荐系统实践之路
“小数据”的统计学
重磅!8大策略让你对抗机器学习数据集里的不均衡数据
小团队撬动大数据——当当推荐团队的机器学习实践
微博推荐架构的演进
科普文 手把手教你微信公众号数据分析
信息图制作的六个注意点
【权利的游戏】剧透新玩法:情理之中?意料之外
推荐系统(Recommender System)的技术基础
核心算法 谷歌如何从网络的大海里捞到针
Quora数据科学家和机器学习工程师是如何合作的
阿里巴巴PPT:大数据下的数据安全
数据建模那点事儿
全民拥抱Docker云–Lhotse系统经验分享
实时股票分析系统的架构与算法
架构师必看 京东咚咚架构演进
什么叫对数据敏感?怎样做数据分析?
推荐系统基础知识储备
刘德寰:数据科学的整合与细分 数据科学的七个危险趋势(视频)
实际工作中,如何做简单的数据分析?
分布式前置机器学习在威胁情报中的应用(附PPT下载)
数据科学 怎样进行大数据的入门级学习?
扛住100亿次请求 如何做一个“有把握”的春晚红包系统?(PPT下载)
从 LinkedIn 的数据处理机制学习数据架构
大数据会如何改变管理咨询公司(I)
优秀大数据GitHub项目一览
生硬的数字和数据新闻:这么近,那么远
经典大数据架构案例:酷狗音乐的大数据平台重构(长文)
揭秘中兴大数据在银行领域的系统部署
基于大数据的用户画像构建(理论篇)
【R】支持向量机模型实现
数据图处处有陷阱?五个例子教你辨真伪
如何用R绘制地图
你确定你真的懂用户画像?
数据模型需要多少训练数据?
【接地气】01 数据报表的颜色怎么配
游戏价值和数据分析新思路
【R】异常值检测
快的打车架构实践
豆瓣还是朋友圈:大数据、新方法和日常问
PPT数据图表,怎么做才好看?
大道至简的数据体系构建方法论
数据的误区及自身业务
新浪微博的用户画像是怎样构建的?
面试干货!21个必知数据科学面试题和答案part1(1-11)
易观智库:中国大数据产业生态图谱2016(附下载)
Airbnb的数据基础架构
50PB海量数据排序,谷歌是这么做的
大数据时代工程师如何应对–今日头条走进硅谷技术讲座
D3.js教学记(下)
D3.js教学记(上)
飞林沙:企业级服务公司如何赚钱?只有平台级产品才有大数据的理论
一个母婴电子商务网站的大数据平台及机器学习实践
7大板块 组成数据分析师的完整知识结构
干货:SaaS领域如何分析收入增长?
学术 | 词嵌入的类比特性有实用意义吗?
6个用好大数据的秘诀
一个数据库外行眼中的微信优化 (附专家补充)
大数据调研,如何实现快全准?
数据大师Olivier Grisel给志向高远的数据科学家的指引
数据堂肖永红:数据交易的是使用权或数据的增值,而不是数据本身(PPT附下载)
淘宝商品详情平台化思考与实践
刘译璟:百分点大数据理念和实践(图文+PPT下载)
如何快速搞定一份看起来还不错的演示文档?
【BABY夜谈大数据】决策树
数据驱动设计:数据处理流程、分析方法和实战案例
美图数据总监:Facebook的法宝,我们在产品中怎么用?
树的内核:量化树结构化数据之间的相似性
拿到用户数据之后,LinkedIn怎么赚钱?
GrowingIO张溪梦:增长黑客的核心 企业应该重视产品留存率(附PPT下载)
[译]Airbnb是如何使用数据理解用户旅行体验的?
微博推荐数据服务代理: hyper_proxy的设计和实现
星图数据谷熠:消费领域DaaS 大数据重构未来商业游戏规则(附PPT下载)
鲍忠铁:TalkingData大数据技术与应用实践(PPT下载)
【干货教材】数据分析VS业务分析需求
九枝兰专访:数字营销的核心—企业如何使用数据管理平台(DMP)进行精准营销
我们的应用系统是如何支撑千万级别用户的
R应用空间数据科学
Excel进行高级数据分析(上)
Excel进行高级数据分析(下)
国内各大互联网公司2.0版技术站点收集
网站数据分析思路导图
大数据分析报表设计开发要素
大数据需要的12个工具 推荐
YARN/MRv2 Resource Manager深入剖析—NM管理
YARN/MRv2 Resource Manager深入剖析—RMApp状态机分析
Hadoop 1.0与Hadoop 2.0资源管理方案对比
Hadoop 2.0中单点故障解决方案总结
Hadoop 2.0 (YARN)中的安全机制概述
Hadoop 新特性、改进、优化和Bug分析系列1:YARN-378
Hadoop 新特性、改进、优化和Bug分析系列2:YARN-45
Hadoop 新特性、改进、优化和Bug分析系列3:YARN-392
Hadoop版本选择探讨
探究提高Hadoop稳定性与性能的方法
《Effective C++》读书笔记(第一部分)
Hadoop分布式环境下的数据抽样
Hadoop计算能力调度器算法解析
如何编写Hadoop调度器
数据结构之红黑树
Hadoop pipes设计原理
《C++ Primer plus》学习笔记之”类”
《C++ Primer plus》学习笔记之”类继承”
《C++ Primer plus》学习笔记之”C++中的代码重用”
《C++ Primer plus》学习笔记之”异常”
《C++ Primer plus》学习笔记之”RTTI”
Hadoop pipes编程
Hadoop Streaming高级编程
《C++ Primer plus》学习笔记之”标准模板库”
《C++ Primer plus》学习笔记之”输入输出库”
Linux Shell 命令总结
算法之图搜索算法(一)
awk使用总结
素数判定算法
《C++ Primer plus》学习笔记之“函数探幽”
使用Thrift RPC编写程序
如何在Hadoop上编写MapReduce程序
怎样从10亿查询词找出出现频率最高的10个

快的打车架构实践

于2017-04-01由小牛君创建

分享到:


快的打车

快的打车从2013年年底到2014年下半年,系统访问量迅速膨胀,很多复杂的问题要在短时间内解决,且不能影响线上业务,这是比较大的挑战,本文将会阐述快的打车架构演变过程遇到的一些有代表性的问题和解决方案。

LBS的瓶颈和方案

先看看基本的系统模型,如图1所示。

数据架构

  1. 司机每隔几秒钟上报一次经纬度,存储在MongoDB里;
  2. 乘客发单时,通过MongoDB圈选出附近司机;
  3. 将订单通过长连接服务推送给司机;
  4. 司机接单,开始服务。

MongoDB集群是一主多从的复制集方式,读写都很密集(4w+/s写、1w+/s读)时出现以下问题:

  1. 从服务器CPU负载急剧上升;
  2. 查询性能急剧降低(大量查询耗时超过800毫秒);
  3. 查询吞吐量大幅降低;
  4. 主从复制出现较大的延迟。

原因是当时的MongoDB版本(2.6.4)是库级别的锁每次写都会锁库,还有每一次LBS查询会分解成许多单独的子查询,增大整个查询的锁等待概率。我们最后将全国分为4个大区,部署多个独立的MongoDB集群,每个大区的用户存储在对应的MongoDB集群里。

长连接服务稳定性

我们的长连接服务通过Socket接收客户端心跳、推送消息给乘客和司机。打车大战期间,长连接服务非常不稳定。

先说说硬件问题,现象是CPU的第一个核经常使用率100%,其他的核却非常空闲,系统吞吐量上不去,对业务的影响很大。经过较长时间排查,最终发现这是因为服务器用了单队列网卡,I/O中断都被分配到了一个CPU核上,大量数据包到来时,单个CPU核无法全部处理,导致LVS不断丢包连接中断。最后解决这个问题其实很简单,换成多队列网卡就行。

再看软件问题,长连接服务当时用Mina实现,Mina本身存在一些问题:内存使用控制粒度不够细、垃圾回收难以有效控制、空闲连接检查效率不高、大量连接时周期性CPU使用率飙高。快的打车的长连接服务特点是:大量的广播、消息推送具有不同的优先级、细粒度的资源监控。最后我们用AIO重写了这个长连接服务框架,彻底解决了这个问题。主要有以下特性:

  1. 针对快的场景定制开发;
  2. 资源(主要是ByteBuffer)池化,减少GC造成的影响;
  3. 广播时,一份ByteBuffer复用到多个通道,减少内存拷贝;
  4. 使用TimeWheel检测空闲连接,消除空闲连接检测造成的CPU尖峰;
  5. 支持按优先级发送数据。

其实Netty已经实现了资源池化和TimeWheel方式检测空闲连接,但无法做到消息优先级区分和细粒度监控,这也算是快的自身的定制特性吧,通用的通信框架确实不好满足。选用AIO方式仅仅是因为AIO的编程模型比较简单而已,其实底层的性能并没有多大差别。

系统分布式改造

快的打车最初只有两个系统,一个提供HTTP服务的Web系统,一个提供TCP长连接服务的推送系统,所有业务运行在这个Web系统里,代码量非常庞大,代码下载和编译都需要花较长时间。

业务代码都混在一起,频繁的日常变更导致并行开发的分支非常多,测试和代码合并以及发布验证的效率非常低下,常常一发布就通宵。这种情况下,系统的伸缩性和扩展性非常差,关键业务和非关键业务混在一起,互相影响。

因此我们Web系统做了拆分,将整个系统从上往下分为3个大的层次:业务层、服务层以及数据层。

我们在拆分的同时,也仔细梳理了系统之间的依赖。对于强依赖场景,用Dubbo实现了RPC和服务治理。对于弱依赖场景,通过RocketMQ实现。Dubbo是阿里开源的框架,在阿里内部和国内大型互联网公司有广泛的应用,我们对Dubbo源码比较了解。RocketMQ也是阿里开源的,在内部得到了非常广泛的应用,也有很多外部用户,可简单将RocketMQ理解为Java版的Kafka,我们同样也对RocketMQ源码非常了解,快的打车所有的消息都是通过RocketMQ实现的,这两个中间件在线上运行得非常稳定。

借着分布式改造的机会,我们对系统全局也做了梳理,建立研发流程、代码规范、SQL规范,梳理链路上的单点和性能瓶颈,建立服务降级机制。

无线开放平台

当时客户端与服务端通信面临以下问题。

  1. 每新增一个业务请求,Web工程就要改动发布。
  2. 请求和响应格式没有规范,导致服务端很难对请求做统一处理,而且与第三方集成的方式非常多,维护成本高。
  3. 来多少请求就处理多少,根本不考虑后端服务的承受能力,而某些时候需要对后端做保护。
  4. 业务逻辑比较分散,有的在Web应用里,有的在Dubbo服务里。提供新功能时,工程师关注的点比较多,增加了系统风险。
  5. 业务频繁变化和快速发展,文档无法跟上,最后没人能说清到底有哪些协议,协议里的字段含义。

针对这些问题,我们设计了快的无线开放平台KOP,以下是一些大的设计原则。

  1. 接入权限控制
    为接入的客户端分配标示和密钥,密钥由客户端保管,用来对请求做数字签名。服务端对客户端请求做签名校验,校验通过才会执行请求。
  2. 流量分配和降级
    同样的API,不同接入端的访问限制可以不一样。可按城市、客户端平台类型做ABTest。极端情况下,优先保证核心客户端的流量,同时也会优先保证核心API的服务能力,例如登录、下单、接单、支付这些核心的API。被访问被限制时,返回一个限流错误码,客户端根据不同场景酌情处理。
  3. 流量分析
    从客户端、API、IP、用户多个维度,实时分析当前请求是否恶意请求,恶意的IP和用户会被冻结一段时间或永久封禁。
  4. 实时发布
    上线或下线API不需要对KOP进行发布,实时生效。当然,为了安全,会有API的审核机制。
  5. 实时监控
    能统计每个客户端对每个API每分钟的调用总量、成功量、失败量、平均耗时,能以分钟为单位查看指定时间段内的数据曲线,并且能对比历史数据。当响应时间或失败数量超过阈值时,系统会自动发送报警短信。

实时计算与监控

我们基于Storm和HBase设计了自己的实时监控平台,分钟级别实时展现系统运行状况和业务数据(架构如图2所示),包含以下几个主要部分。

数据架构

图2 监控系统架构图

  1. 核心计算模型
    求和、求平均、分组。
  2. 基于Storm的实时计算
    Storm的逻辑并不复杂,只有两个Bolt,一个将一条日志解析成KV对,另外一个基于KV和设定的规则进行计算。每隔一分钟将数据写入RocketMQ。
  3. 基于HBase的数据存储
    只有插入没有更新,避免了HBase行锁竞争。rowkey是有序的,因为要根据维度和时间段查询,这样会形成HBase Region热点,导致写入比较集中,但是没有性能问题,因为每个维度每隔1分钟定时插入,平均每秒的插入很少。即使前端应用的日志量突然增加很多,HBase的插入频度仍然是稳定的。
  4. 基于RocketMQ的数据缓冲
    收集的日志和Storm计算的结果都先放入MetaQ集群,无论Storm集群还是存储节点,发生故障时系统仍然是稳定的,不会将故障放大;即使有突然的流量高峰,因为有消息队列做缓冲,Storm和HBase仍然能以稳定的TPS处理。这些都极大的保证了系统的稳定性。RocketMQ集群自身的健壮性足够强,都是物理机。SSD存储盘、高配内存和CPU、Broker全部是M/S结构。可以存储足够多的缓冲数据。

某个系统的实时业务指标(关键数据被隐藏),见图3。

数据架构

图3 某个业务系统大盘截图

数据层改造

随着业务发展,单数据库单表已经无法满足性能要求,特别是发券和订单,我们选择在客户端分库分表,自己做了一个通用框架解决分库分表的问题。但是还有以下问题:

  1. 数据同步
    快的原来的数据库分为前台库和后台库,前台库给应用系统使用,后台库只供后台使用。不管前台应用有多少库,后台库只有一个,那么前台的多个库多个表如何对应到后台的单库单表?MySQL的复制无法解决这个问题。
  2. 离线计算抽取
    还有大数据的场景,大数据同事经常要dump数据做离线计算,都是通过Sqoop到后台库抽数据,有的复杂SQL经常会使数据库变得不稳定。而且,不同业务场景下的Sqoop会造成数据重复抽取,给数据库添加了更多的负担。

我们最终实现了一个数据同步平台,见图4。

数据架构

图4 数据同步平台架构图

  1. 数据抽取用开源的canal实现,MySQL binlog改为Row模式,将canal抽取的binlog解析为MQ消息,打包传输给MQ;
  2. 一份数据,多种消费场景,之前是每种场景都抽取一份数据;
  3. 各个消费端不需要关心MySQL,只需要关心MQ的Topic;
  4. 支持全局有序,局部有序,并发乱序;
  5. 可以指定时间点回放数据;
  6. 数据链路监控、报警;
  7. 通过管理平台自动部署节点。

分库分表解决了前台应用的性能问题,数据同步解决了多库多表归一的问题,但是随着时间推移,后台单库的问题越来越严重,迫切需要一种方案解决海量数据存储的问题,同时又要让现有的上层应用不会有太大改动。因此我们基于HBase和数据同步设计了实时数据中心,如图5所示。

数据架构

图5 实时数据中心架构图

  1. 将前台MySQL多库多表通过同步平台,都同步到了HBase;
  2. 为减少后台应用层的改动,设计了一个SQL解析模块,将SQL查询转换为HBase查询;
  3. 支持二级索引。
    说说二级索引,HBase并不支持二级索引,对它而言只有一个索引,那就是Rowkey。如果要按其它字段查询,那就要为这些字段建立与Rowkey的映射关系,这就是所谓的二级索引。HBase二级索引可以通过Coprocessor在数据插入之前执行一段代码,这段代码运行在HBase服务端(Region Server),可以让这段代码负责插入二级索引。实时数据中心的二级索引是在客户端负责插入的,并没有使用Coprocessor,主要原因是Coprocessor不容易实现索引的批量插入,而批量插入,实践证明,是提升HBase插入性能非常有效的手段。二级索引的应用其实还有些条件,如下:
  4. 排序
    在HBase中,只有一种排序,就是按Rowkey排序,因此,在建立索引的时候,实际上就定死了将来查询结果的排序。某个索引字段的reverse属性为true,则按这个字段倒序排序,否则正序排序。
  5. 打散
    单调变化的Rowkey读写压力很难均匀分布到多个Region上,而打散将会使读写均匀分布到多个Region,因此提升了读写性能。但打散也有局限性,主要的是,经过打散的字段将无法支持范围查询。而且,hash和reverse这两个属性是互斥的,且hash优先级高,就是说一旦设置了hash=true,则会忽略reverse这个属性。
  6. 串联
    另外需要特别强调的是,索引配置也影响到多表归一,作为“串联”的字段,必须建立唯一索引,如果串联字段上没有建立唯一索引,将无法完成多表归一。

我们还实现了一套将SQL语句转换成HBase API的引擎,可以通过SQL语句直接操作HBase。这里需要指出的是HSQL引擎和Hive是不同的,Hive主要用于将SQL语句转换成Hadoop的Map/Reduce任务,当然也可以转换成HBase的查询。但Hive无法利用二级索引(HBase本来就不存在二级索引这个概念),Hive主要面向的是大批量、低频度、高延迟、顺序读的访问场景,而HSQL可以有效利用二级索引,它面向的是小批量、高频度、低延迟、随机读的访问场景。

作者:王小雪滴滴出行架构师,原快的打车架构师。从无到有组建了快的打车基础服务团队,主持研发、引进了众多基础框架和服务,推进快的架构升级,从稳定性、可用性、性能、安全、监控多方面体系化的建设了快的高可用架构。对高并发分布式系统架构、实时数据处理、网络通信和Java中间件有比较深厚的经验积累。

本文为《程序员》原创文章

End.