大数据培训新三板挂牌机构 股票代码:837906 | EN CN
阿里巴巴菜鸟级数据产品经理半年回顾总结篇
干货教程:如何绘制业务流程图(二)
干货教程:如何绘制业务流程图(一)
技术贴:如何在数据库中秘密地查询隐私数据
攻略教程:信息图(infographic)是怎么做出来的?
分析师一定要看!用数据讲故事的五个步骤
技术篇:怎样玩转千万级别的数据?
北漂书生:大数据时代SEO数据如何搜集和分析
干货,从十大问题重新认识并读懂互联网
相似图片搜索、算法、识别的原理解析(下)
相似图片搜索、算法、识别的原理解析(上)
制作信息图时请遵循这10条原则
提高表格可读性的一些技巧,适用于Excel、PPT等数据报表
实用教程:如何让Excel图表更具“商务气质”?
一张数据信息图是这样制作完成的
菜鸟读财报,如何从上市公司财报中挖情报?
北大数据分析老鸟写给学弟们一封信
如何一步一步制作出高品质数据信息图?
总结:海量数据分析处理的十个方法
【实战经验】数据分析师如何了解老板真正想法?
零售业数据分析那些事儿
数据分析时l常用电子表格公式【大全】
用数据来告诉你 上市公司财报的秘密
这12个数据能 帮你搞定淘宝店铺
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(四)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(三)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(二)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(一)
淘宝网店从激活到挽留,4步走玩转数据营销
文案怎样写才有意思、不空洞、打动人?
入门级扫盲贴:数据分析的步骤有哪些?
关系即数据,论社交媒体的关系转换
数据的力量,苹果教你用数据鄙视竞争对手
谁说文科生不能做数据分析?数据分析入行→技能提升→优势
产品运营数据分析——SPSS数据分组案例
如何追踪iPhone和iPad等移动设备的用户行为数据?
阿里巴巴中国站:用户满意度指标权重计算方法
广告中的AdNetwork、AdExchange、DSP、SSP、RTB和DMP是什么?
信息图制作教程:关于数值的表现
为什么大数据会如此轰动?(值得深度的文章)
多图技术贴:深入浅出解析大数据平台架构
面板数据分析中标准误的估计修正——根据Peterson (2009)的归纳
财务官、投资人、CIO看过来:给企业数据定价
推荐系统中常用算法 以及优点缺点对比
探索Weotta搜索引擎背后的大数据技术
如何识别虚假数据?
为什么我们像驯化小狗那样驯化算法
程序员必须知道的10大基础实用算法及其讲解
电子商务:最影响转化率的九大要素
如何迅速成为一名数据分析师?
想从事大数据、海量数据处理相关的工作,如何自学打基础?
如何用亚马逊弹性MapReduce分析大数据?
译文:机器学习算法基础知识
给hadoop新手的一封信:Hadoop入门自学及对就业的帮助
从入门到精通,我是这样学习算法的
小商家,从老客户身上获取的数据才更有意义
13页PPT讲述:大数据下网站数据分析应用
40页PPT详解:京东大数据基础构架与创新应用
67页PPT解密搜索引擎背后的大技术:知识图谱,大数据语义链接的基石
营销洞察力——10个营销度量指标
技术篇:前端数据之美如何展示?
董飞:美国大数据工程师面试攻略【PPT】
easel:如何制作好的信息图——来自专家的顶级技巧
大数据实操:以3D打印机为例,如何知道卖点有没有市场需求?
大数据建模 需要了解的九大形式
用户画像数据建模方法
从规划开始,公司or企业如何入手和实施大数据?
干货:商品信息数据分析和展现系统的设计与开发
高手教你用Excel制作百度迁徙数据地图
50篇干货:淘宝店/电子商务如何玩转数据分析?
精华索引:大数据实际应用案例50篇
验证最小化可行产品 (MVP) 的 15 种方法
干货:数据分析师的完整知识结构
大数据技术Hadoop面试题,看看你能答对多少?答案在后面
用SPSS做数据分析?先弄懂SPSS的基础知识吧
怎样做出优秀的扁平化设计风格PPT? 扁平化PPT设计手册#3
解答│做大数据过程中遇到的13个问题
40页PPT│社交网络发展的新动力:大数据与众包
以Amazon、豆瓣网为例,探索推荐引擎内部的秘密#1
怎样做出优秀的扁平化设计风格PPT?#2
怎样做出优秀的扁平化设计风格PPT?#1
36页PPT│大数据分析关键技术在腾讯的应用服务创新
如何丰满地做SWOT分析?
【35页PPT】TalkingData研发副总阎志涛:移动互联网大数据处理系统架构
27页PPT|以珍爱网为例,如何构建有业务价值的数据分析系统?
国外数据新闻资源分享
21页PPT重磅发布:Mariana——腾讯深度学习平台的进展与应用
从0到100——知乎架构变迁史
PPT解读:百度大数据质量保障方案探索
45页PPT|大数据环境下实现一个O2O通用推荐引擎的实践
从数据看豆瓣兴衰
深度学习系列:解密最接近人脑的智能学习机器——深度学习及并行化实现(四)
重磅推荐:129页PPT讲述移动时代创业黄金法则 via:腾讯企鹅智酷
重磅推荐:大数据工程师飞林沙的年终总结&算法数据的思考
OpenKN——网络大数据时代的知识计算引擎
大数据下城市计算的典型应用
技术贴:大数据告诉你,如何给微信公众号文章取标题?
你的QQ暴露了你的心——QQ大数据及其应用介绍PPT
如何从企业报表看企业的生存能力?
实用的大数据技巧合集
技术帝揭秘:充电宝是如何盗取你的个人隐私的?
重磅!50页PPT揭秘腾讯大数据平台与推荐应用架构
原创教程:饼图之复合饼图与双层饼图(1)
PPT:大数据时代的设计特点——不了解这个你做不了今天的设计
教程贴:如何用方程式写春联?
原创教程:如何用Excel制作简易动态对比图
深度译文:机器学习那些事
教程帖:数学之美——手把手教你用Excel画心(动态图)
董老师走进斯坦福,聊聊硅谷创业公司和大数据的事儿(附课件PPT下载)
【限时】年度钜献,108个大数据文档PDF开放下载
董飞专栏:大数据入门——大数据相关技术、Hadoop生态、LinkedIn内部实战
亿级用户下的新浪微博平台架构
一张图了解磁盘里的数据结构
浅析数据化设计思维在阿里系产品的应用
美团推荐算法实践
一个P2P创业公司有哪些部门,都是做什么的?
一个P2P平台的详细运营框架是怎样的?
机器学习中的算法——决策树模型组合之随机森林与GBDT
神经网络简史
58页PPT看懂互联网趋势,大数据/物联网/云计算/4G都有了
广点通背后的大数据技术秘密——大规模主题模型建模及其在腾讯业务中的应用(附PPT)
微信红包之CBA实践PPT——移动互联网海量访问系统设计
一文读懂机器学习,大数据/自然语言处理/算法全有了……
搜狐新闻客户端的背后大数据技术原理——推荐系统(PPT)
原创教程:用Excel做动态双层饼图
半小时读懂PMP私有广告交易市场
怎样分析样本调研数据(译)
PPT:支付宝背后的大数据技术——DataLab、Higo的实践及应用
大数据技术人员的工具包——开源大数据处理工具list(限时下载)
计算机视觉:随机森林算法在人体识别中的应用
24页PPT:机器学习——支持向量机SVM简介(附下载)
互联网高手教你如何搜集你想要的信息
深度:对地观测大数据处理、挑战与思考
原创教程:用Excel做饼图之复合饼图与双层饼图(2)
移动大数据时代: 无线网络的挑战与机遇(附pdf下载)
Excel使用技巧——25招必学秘技
【年度热门】加上这些 Excel 技能点,秒杀众人(多图)
原创教程:用Excel做纵向折线图
知识图谱——机器大脑中的知识库
何明科专栏:用数据化的方式解析投资条款
DT时代,如何用大数据分析创造商业价值(23页PPT)
MIT牛人梳理脉络详解宏伟现代数据体系
你的老婆是怎么算出来的?揭秘佳缘用户推荐系统
飞林沙:商品推荐算法&推荐解释
PPT:如何成为真正的数据架构师?(附下载)
开源大数据查询分析引擎现状
董飞专栏:打造数据产品必知秘籍
译文:如何做强大又漂亮的信息图
如何使用Amazon Machine Learning构建机器学习预测模型
如何运用数据协助货架管理(内附26张PPT)
SVM算法
主流大数据系统在后台的层次角色及数据流向
PPT:阿里全息大数据构建与应用
人脸识别技术大总结——Face Detection & Alignment
教程:用Excel制作成对条形图
易观智库:大数据下的用户分析及用户画像(18页PPT附下载)
技术向:如何设计企业级大数据分析平台?
电商数据分析基础指标体系
IBM SPSS Modeler 决策树之银行行销预测应用分析
拓扑数据分析与机器学习的相互促进
基于 R 语言和 SPSS 的决策树算法介绍及应用
用php做爬虫 百万级别知乎用户数据爬取与分析
另类新浪微博基本数据采集方法
以10万+阅读的文章为例 教你做微信公众号的运营数据分析
破解数据三大难题:变现?交易?隐私?
微店的大数据平台建设实践与探讨
阿里巴巴PPT:大数据基础建议及产品应用之道
基于社会媒体的预测技术
人工智能简史
技巧:演讲中怎样用数据说话
马云和小贝选谁做老公?写给非数据人的数据世界入门指南
掘金大数据产业链:上游资源+中游技术+下游应用
原创教程:手把手教你用Excel做多层折线图
销售分析:如何从数据指标发现背后的故事
如何一步步从数据产品菜鸟走到骨干数据产品
也来谈谈微博的用户画像
行走在网格之间:微博用户关系模型
如何拍出和明星一样美爆的自拍照?斯坦福大学用卷积神经网络建模告诉你
运营商如何玩转大数据? 浙江移动云计算和大数据实践(PPT附下载)
大数据分析的集中化之路 建设银行大数据应用实践PPT
腾讯防刷负责人:基于用户画像大数据的电商防刷架构
创业提案的逻辑
友盟分享 | 移动大数据平台架构思想以及实践经验
寻路推荐 豆瓣推荐系统实践之路
“小数据”的统计学
重磅!8大策略让你对抗机器学习数据集里的不均衡数据
小团队撬动大数据——当当推荐团队的机器学习实践
微博推荐架构的演进
科普文 手把手教你微信公众号数据分析
信息图制作的六个注意点
【权利的游戏】剧透新玩法:情理之中?意料之外
推荐系统(Recommender System)的技术基础
核心算法 谷歌如何从网络的大海里捞到针
Quora数据科学家和机器学习工程师是如何合作的
阿里巴巴PPT:大数据下的数据安全
数据建模那点事儿
全民拥抱Docker云–Lhotse系统经验分享
实时股票分析系统的架构与算法
架构师必看 京东咚咚架构演进
什么叫对数据敏感?怎样做数据分析?
推荐系统基础知识储备
刘德寰:数据科学的整合与细分 数据科学的七个危险趋势(视频)
实际工作中,如何做简单的数据分析?
分布式前置机器学习在威胁情报中的应用(附PPT下载)
数据科学 怎样进行大数据的入门级学习?
扛住100亿次请求 如何做一个“有把握”的春晚红包系统?(PPT下载)
从 LinkedIn 的数据处理机制学习数据架构
大数据会如何改变管理咨询公司(I)
优秀大数据GitHub项目一览
生硬的数字和数据新闻:这么近,那么远
经典大数据架构案例:酷狗音乐的大数据平台重构(长文)
揭秘中兴大数据在银行领域的系统部署
基于大数据的用户画像构建(理论篇)
【R】支持向量机模型实现
数据图处处有陷阱?五个例子教你辨真伪
如何用R绘制地图
你确定你真的懂用户画像?
数据模型需要多少训练数据?
【接地气】01 数据报表的颜色怎么配
游戏价值和数据分析新思路
【R】异常值检测
快的打车架构实践
豆瓣还是朋友圈:大数据、新方法和日常问
PPT数据图表,怎么做才好看?
大道至简的数据体系构建方法论
数据的误区及自身业务
新浪微博的用户画像是怎样构建的?
面试干货!21个必知数据科学面试题和答案part1(1-11)
易观智库:中国大数据产业生态图谱2016(附下载)
Airbnb的数据基础架构
50PB海量数据排序,谷歌是这么做的
大数据时代工程师如何应对–今日头条走进硅谷技术讲座
D3.js教学记(下)
D3.js教学记(上)
飞林沙:企业级服务公司如何赚钱?只有平台级产品才有大数据的理论
一个母婴电子商务网站的大数据平台及机器学习实践
7大板块 组成数据分析师的完整知识结构
干货:SaaS领域如何分析收入增长?
学术 | 词嵌入的类比特性有实用意义吗?
6个用好大数据的秘诀
一个数据库外行眼中的微信优化 (附专家补充)
大数据调研,如何实现快全准?
数据大师Olivier Grisel给志向高远的数据科学家的指引
数据堂肖永红:数据交易的是使用权或数据的增值,而不是数据本身(PPT附下载)
淘宝商品详情平台化思考与实践
刘译璟:百分点大数据理念和实践(图文+PPT下载)
如何快速搞定一份看起来还不错的演示文档?
【BABY夜谈大数据】决策树
数据驱动设计:数据处理流程、分析方法和实战案例
美图数据总监:Facebook的法宝,我们在产品中怎么用?
树的内核:量化树结构化数据之间的相似性
拿到用户数据之后,LinkedIn怎么赚钱?
GrowingIO张溪梦:增长黑客的核心 企业应该重视产品留存率(附PPT下载)
[译]Airbnb是如何使用数据理解用户旅行体验的?
微博推荐数据服务代理: hyper_proxy的设计和实现
星图数据谷熠:消费领域DaaS 大数据重构未来商业游戏规则(附PPT下载)
鲍忠铁:TalkingData大数据技术与应用实践(PPT下载)
【干货教材】数据分析VS业务分析需求
九枝兰专访:数字营销的核心—企业如何使用数据管理平台(DMP)进行精准营销
我们的应用系统是如何支撑千万级别用户的
R应用空间数据科学
Excel进行高级数据分析(上)
Excel进行高级数据分析(下)
国内各大互联网公司2.0版技术站点收集
网站数据分析思路导图
大数据分析报表设计开发要素
大数据需要的12个工具 推荐
YARN/MRv2 Resource Manager深入剖析—NM管理
YARN/MRv2 Resource Manager深入剖析—RMApp状态机分析
Hadoop 1.0与Hadoop 2.0资源管理方案对比
Hadoop 2.0中单点故障解决方案总结
Hadoop 2.0 (YARN)中的安全机制概述
Hadoop 新特性、改进、优化和Bug分析系列1:YARN-378
Hadoop 新特性、改进、优化和Bug分析系列2:YARN-45
Hadoop 新特性、改进、优化和Bug分析系列3:YARN-392
Hadoop版本选择探讨
探究提高Hadoop稳定性与性能的方法
《Effective C++》读书笔记(第一部分)
Hadoop分布式环境下的数据抽样
Hadoop计算能力调度器算法解析
如何编写Hadoop调度器
数据结构之红黑树
Hadoop pipes设计原理
《C++ Primer plus》学习笔记之”类”
《C++ Primer plus》学习笔记之”类继承”
《C++ Primer plus》学习笔记之”C++中的代码重用”
《C++ Primer plus》学习笔记之”异常”
《C++ Primer plus》学习笔记之”RTTI”
Hadoop pipes编程
Hadoop Streaming高级编程
《C++ Primer plus》学习笔记之”标准模板库”
《C++ Primer plus》学习笔记之”输入输出库”
Linux Shell 命令总结
算法之图搜索算法(一)
awk使用总结
素数判定算法
《C++ Primer plus》学习笔记之“函数探幽”
使用Thrift RPC编写程序
如何在Hadoop上编写MapReduce程序
怎样从10亿查询词找出出现频率最高的10个

[译]Airbnb是如何使用数据理解用户旅行体验的?

于2017-04-01由小牛君创建

分享到:


翻译:汪健

原文:How well does NPS predict rebooking?

Airbnb的数据科学家收集数据并使用这些数据来优化产品,通过数据找出问题所在,并且通过数据协助做出业务决策。对于大多数用户,“Airbnb体验”最典型的瞬间就发生在现实世界——当他们根据自己计划去旅行时,当酒店主人跟他们打招呼时,当他们住在酒店时,当他们探索目的地时。这些瞬间决定了Airbnb体验的成败,不管我们的网站做得多大。这篇文章的目的是展示我们如何利用数据去理解用户旅行体验的质量,特别是如何增加“净推荐值NPS”的价值。

目前,我们能收集到与线下体验的最好的相关信息是在旅客结束行程后通过Airbnb.com网站上的用户反馈进行相关信息反馈。这个反馈是可选的,要求对总体体验使用文本反馈并进行1-5的评价分数打分,除了总体体验还有其他子分类项目,例如准确性(Accuracy)、整洁度(Cleanliness)、入住(Checkin)、沟通(Communication)、地点(Location)和价值(Value)。从2013年年底开始,我们增加了一个问题到我们的反馈表中,这就是NPS问题。

Airbnb.com网站上的用户反馈相关信息
NPS或者称“净推荐值”是在2003年由Fred Reicheld引入到客户忠诚度并得到广泛的使用,相关可以参考

[https://hbr.org/2003/12/the-one-number-you-need-to-grow/ar/1] 。我们问用户“你有多大可能向你的朋友推荐Airbnb?”,这就是所谓的“可能性推荐”或LTR问题。那些对此可能性问题回答9或10的用户被标记为“推荐者”或忠诚的热心者,那些只打了0-6分的用户则被标记为“批评者”或不满意的用户,那些打了7或8分的用户则被认为是“被动的”,他们喜欢公司的产品或服务,但不会向朋友推荐。。我们公司的NPS(净推荐值)是通过“推荐者”百分比减去“批评者”百分比去计算的,结果值是一个-100到+100的一个数字,-100是最糟糕的情况,即所有的打分的都是批评者,+100则是最好的情况,即所有的打分者都是推荐者。

通过用户一个简单的住宿满意度去衡量一个用户的忠诚度,NPS调查的目标是成为一个更有效率的方法论去确定顾客再次回来预订的可能性、向朋友传播推荐的可能性,并防止市场压力使用户流失到竞争对手中。在这篇博客中,我们期待我们的数据去找出事实是否真的如此。我们发现较高的NPS确实普遍对应着更多的推荐人和重新预订。

方法论

我们将参考单独个体对于NPS问题作答作为他们LTR(推荐可能性)分数的打分,NPS的分数范围是-100到+100,LTR是一个范围从0到10的整数。在这项研究中,我们看看所有在2014年1月15日和2014年4月1日之间结束他们旅程的客户,如果一个顾客在此段时间进行了超过一次的旅程,仅仅以第一次旅程作为参考,然后我们尝试预测客户是否会在Airbnb进行下一次的预定,而这下一次的时间范围是从顾客结束了他的此次旅程后到未来一年的时间内。

有一点需要注意的是,再一次旅程结束后的反馈是可选择而非必须的,而且反馈表也是由不同的部分构成的。有一小部分用户并不会填写反馈表或者选择性地填写了反馈表并不回答NPS问题,而NPS通常只能根据反馈者去做计算。在这个分析中,我们将没有填写反馈表的用户或者填了反馈表但没有填NPS问题的用户等因素考虑进去。

为了评估LTR的预测能力,我们控制与重新预定相关的其他参数,这些参数包括:

1、关于总体反馈得分和反馈表中子类项的选项,所有反馈项目都分为1-5个等级。

2、顾客获取渠道(例如自然加入的顾客或同个营销活动引入的顾客)。

3、旅程目的地(例如美国、欧洲、亚洲等)。

4、顾客来源地。

5、之前有在Airbnb预定的顾客。

6、 旅程距离远近程度。

7、 顾客数量。

8、 每晚价格。

9、 结账的月份(考虑季节性)。

10、 房间类型(整个家庭、包房、公用客房等)。

11、顾客主人拥有其他物品的数量。

我们承认我们的方法可能会有以下缺陷:

1、可能还存在其他形式的与忠诚度相关的因素没有被获取到,我们是根据公司推荐计划提出来的提议参考的,用户忠诚度也能从口碑推荐中体现出来,但此研究并没有获取到此项。

2、可能有一些顾客重新预定的时间跨度比较长,我们比较关注一年时间跨度,但有些顾客可能不经常去旅行,那他们可能在两到三年才会重新预定。

3、 一个顾客的LTR可能不能够作为NPS结果的直接替代品,但即使基于顾客的LTR可能无法准确预测顾客重新预定的可能性,但我们使用NPS去预测一个完整的群体重新预定的可能性,这将会使我们更好地经营。

尽管存在这些不足,我们希望这项研究可以提供一种量化的方式去思考NPS的价值,它能让我们更好地理解线下的体验。

数据的统计描述

我们的数据覆盖了超过600000的顾客,我们的数据显示,提交了反馈表的顾客中,三分之二的顾客是NPS的推荐者,超过一半顾客给LTR打了10分,我们数据集里面的600000用户中只有百分之二是批评者。

评论数据来源的分类情况
旅程反馈表的总体评价分数旨在评估此次行程的质量,而NPS问题则有助于评估顾客的忠诚度。我们通过查看LTR分数的分布式与旅程反馈表总体分数之间的关系,进而来看看这两个变量如何互相关联。虽然LTR与反馈表总体得分是相关的,但它们还是提供了一定差异信息。例如,经历了一个令人失望的体验后的那些一小部分顾客中,它们反馈表只给了一星评价,但这里面26%的顾客其实是Airbnb的推荐者,这表明他们仍然对公司持积极态度。

LTR分数的分布式与旅程反馈表总体分数之间的关系
记住,我们的旅客中NPS批评者只有非常小的一部分,而LTR与反馈总体分数有很大的关联性,我们研究如何将LTR与重新预定率和推荐率关联起来。

当一个顾客在结束完旅程的12个月内通过我们的推荐系统向至少一个朋友作推荐时,我们认为这些顾客是推荐者。我们看到填写了NPS问题的那些顾客,更高的LTR对应着更高的重新预订率和更高的推荐率。更高的LTR地表预订率和更高的推荐率 更高的LTR对应着更高的重新预订率和更高的推荐率。

如果不考虑其他变量,比起批评者(0-6分)的顾客,那些给LTR打了10分的顾客高出13%的可能会重新预订,且高出4%的可能会在未来12个月推荐给好友。有趣的是,我们注意到反馈者中重新预订率几乎与LTR呈线性关系(我们没有足够的数据去区分0-6分的反馈者)。这些结果表明,对于Airbnb,反馈打9分和10分的人作为推荐者。我们还注意到,没有留下反馈评论的顾客行为与批评者一样,事实上,比起LTR0-6分的顾客,他们稍微更加不太可能重新预定和推荐给好友。然而,提交了反馈表单但没有回答NPS问题的顾客(被标记为“no_nps”)的行为与推荐者的行为相似,这些结果表明,当我们做NPS测定时,保持反馈率也同样重要。

接下来,我们看看其他因素是如何影响重新预定率的。例如,我们通过10周数据发现重新预订率是季节性的,这可能是因为淡季旅客往往是忠诚的顾客和经常旅行的人。

重新预订率是季节性的
我们看到短途旅行的顾客更有可能重新预定,这可能是因为有些顾客使用Airbnb进行了一个长期住宿,而他们不太可能会在明年又进行另外一个长期住宿。

短途旅行的顾客更有可能重新预定
我们还看到,重新预订率与每晚价格列表有抛物线关系,住在非常昂贵的酒店的顾客不太可能会重新预定,但住在非常便宜的房源的客人也不太可能会重新预定。

重新预订率与价格有抛物线关系

哪些反馈表项目最能预测重新预定?

除了整体星级评分和LTR得分外,顾客可以选择性地回答他们反馈表中其他子项目,所有项目都分为1-5星级:

1、准确性

2、清洁度

3、入住

4、沟通

5、地点

6、价值

在此部分中,我们将研究根据反馈率去预测顾客是否会在此次旅程结束后的未来12个月内进行另外一个旅程。同样我们还将研究哪个子项目选项最能预计重新预定。

为了做到这些,我们比较了一系列的嵌套逻辑回归模型,我们从一个基础模型开始,而基础模型仅仅包含我们在前面部分提到的一些非反馈表的特征做为变量:

基础模型
然后,我们往这个基础模型中添加一些列反馈表的项目:f1 = f0 + communication

f2 = f0 + cleanliness

f3 = f0 + checkin

f4 = f0 + accuracy

f5 = f0 + value

f6 = f0 + location

f7 = f0 + overall_score

f8 = f0 + ltr_score

我们通过AIC准则比较匹配度的方法分别将模型“f1”到“f8”与嵌套模型“f0

”进行对比,看哪个模型的质量比较高,AIC准则在模型拟合度和参数数量之间进行权衡,参数越多可能会抑制模型拟合度。

AIC准则在模型拟合度和参数数量之间进行权衡
如果我们仅仅引入一个反馈表项目,LTR和总体得分吻合度排名并列第一,添加任何一个子项目也能提升模型吻合度,但仍然比不上LTR或总体得分两项。

接下来,我们通过引入LTR调整我们的基础模型,不断重复执行这个过程看我们可以再往模型中添加反馈表的哪一项。

LTR调整我们的基础模型
通过引入LTR,下一个能提升我们模型的子项目是反馈表的总得分,添加第二个反馈表项目到模型后仅仅稍微提高了模型的拟合度(注意区别两个曲线的标度)。

我们不断重复上面操作,不断将反馈表的的某些项目添加到模型,直到模型统计到不再有显著变化,我们留下了以下一组反馈表项目:

1、LTR

2、总体得分

3、六个子项目中任意其中三项

这些研究结果表明,由于反馈表项目彼此有很强的相关,一旦我们有了LTR和总体得分两项后,我们仅仅只需要六个子项目中的其中三项来优化我们的模型,加入更多的其余子项目将增加更多的自由度,而不能显著改善模型预测的准确性。

最后,我们测试了我们模型预测的准确度:项目准确性

  1. 仅仅引入LTR55.997%
  2. 仅仅引入旅程信息63.495%
  3. 旅程信息 + LTR63.58%
  4. 旅程信息 + 其他反馈表项目63.593%
  5. 旅程信息 + LTR + 其他反馈表63.595%

仅仅使用旅客结束行程后的LTR,我们可以预测他们是否会在未来12个月内进行重新预定,准确率达到56%。如果提供旅客的基本信息给我们,例如主人信息和行程信息,我们可以将预测的准确率提升到63.5%。如果添加反馈表项目(不包括LTR),我们可以做到额外0.1%的提升。提供所有这些信息,包括将LTR加入到模型中准确率仅仅只会再提升0.002%。

结 论

旅程反馈表(包括LTR)仅微略提高我们预测旅客结账后的12个月内旅客是否还会再次预定的能力,在控制了行程和旅客特征等变量后,反馈表星级评级仅仅提升了我们预测准确性的0.1%。在所有反馈表子项目中,LTR对于预测重新预定最有帮助,但如果我们控制了其他项目变量后,它仅仅提升了0.002%准确性。这是因为LTR和反馈表总体得分是高度相关的。

反馈表的目的不仅仅在于预测重复预定,它们使平台更加让人信任,有利于企业建立自己的声誉,提高企业执行质量。我们发现LTR分数更高的旅客更有可能通过我们的推荐系统向其他人推荐Airbnb,他们更可能通过自己好的口碑推荐给别人,批评者实际上会贬低Airbnb以阻止其他人加入Airbnb平台。这里没有探讨将NPS附加关联到业务行为的可能性。但考虑到批评者数量非常少且只是用LTR进行预测重新预定,我们应该谨慎让旅客的NPS拥有过多的权重。

via:解放号

End.