阿里巴巴菜鸟级数据产品经理半年回顾总结篇
干货教程:如何绘制业务流程图(二)
干货教程:如何绘制业务流程图(一)
技术贴:如何在数据库中秘密地查询隐私数据
攻略教程:信息图(infographic)是怎么做出来的?
分析师一定要看!用数据讲故事的五个步骤
技术篇:怎样玩转千万级别的数据?
北漂书生:大数据时代SEO数据如何搜集和分析
干货,从十大问题重新认识并读懂互联网
相似图片搜索、算法、识别的原理解析(下)
相似图片搜索、算法、识别的原理解析(上)
制作信息图时请遵循这10条原则
提高表格可读性的一些技巧,适用于Excel、PPT等数据报表
实用教程:如何让Excel图表更具“商务气质”?
一张数据信息图是这样制作完成的
菜鸟读财报,如何从上市公司财报中挖情报?
北大数据分析老鸟写给学弟们一封信
如何一步一步制作出高品质数据信息图?
总结:海量数据分析处理的十个方法
【实战经验】数据分析师如何了解老板真正想法?
零售业数据分析那些事儿
数据分析时l常用电子表格公式【大全】
用数据来告诉你 上市公司财报的秘密
这12个数据能 帮你搞定淘宝店铺
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(四)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(三)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(二)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(一)
淘宝网店从激活到挽留,4步走玩转数据营销
文案怎样写才有意思、不空洞、打动人?
入门级扫盲贴:数据分析的步骤有哪些?
关系即数据,论社交媒体的关系转换
数据的力量,苹果教你用数据鄙视竞争对手
谁说文科生不能做数据分析?数据分析入行→技能提升→优势
产品运营数据分析——SPSS数据分组案例
如何追踪iPhone和iPad等移动设备的用户行为数据?
阿里巴巴中国站:用户满意度指标权重计算方法
广告中的AdNetwork、AdExchange、DSP、SSP、RTB和DMP是什么?
信息图制作教程:关于数值的表现
为什么大数据会如此轰动?(值得深度的文章)
多图技术贴:深入浅出解析大数据平台架构
面板数据分析中标准误的估计修正——根据Peterson (2009)的归纳
财务官、投资人、CIO看过来:给企业数据定价
推荐系统中常用算法 以及优点缺点对比
探索Weotta搜索引擎背后的大数据技术
如何识别虚假数据?
为什么我们像驯化小狗那样驯化算法
程序员必须知道的10大基础实用算法及其讲解
电子商务:最影响转化率的九大要素
如何迅速成为一名数据分析师?
想从事大数据、海量数据处理相关的工作,如何自学打基础?
如何用亚马逊弹性MapReduce分析大数据?
译文:机器学习算法基础知识
给hadoop新手的一封信:Hadoop入门自学及对就业的帮助
从入门到精通,我是这样学习算法的
小商家,从老客户身上获取的数据才更有意义
13页PPT讲述:大数据下网站数据分析应用
40页PPT详解:京东大数据基础构架与创新应用
67页PPT解密搜索引擎背后的大技术:知识图谱,大数据语义链接的基石
营销洞察力——10个营销度量指标
技术篇:前端数据之美如何展示?
董飞:美国大数据工程师面试攻略【PPT】
easel:如何制作好的信息图——来自专家的顶级技巧
大数据实操:以3D打印机为例,如何知道卖点有没有市场需求?
大数据建模 需要了解的九大形式
用户画像数据建模方法
从规划开始,公司or企业如何入手和实施大数据?
干货:商品信息数据分析和展现系统的设计与开发
高手教你用Excel制作百度迁徙数据地图
50篇干货:淘宝店/电子商务如何玩转数据分析?
精华索引:大数据实际应用案例50篇
验证最小化可行产品 (MVP) 的 15 种方法
干货:数据分析师的完整知识结构
大数据技术Hadoop面试题,看看你能答对多少?答案在后面
用SPSS做数据分析?先弄懂SPSS的基础知识吧
怎样做出优秀的扁平化设计风格PPT? 扁平化PPT设计手册#3
解答│做大数据过程中遇到的13个问题
40页PPT│社交网络发展的新动力:大数据与众包
以Amazon、豆瓣网为例,探索推荐引擎内部的秘密#1
怎样做出优秀的扁平化设计风格PPT?#2
怎样做出优秀的扁平化设计风格PPT?#1
36页PPT│大数据分析关键技术在腾讯的应用服务创新
如何丰满地做SWOT分析?
【35页PPT】TalkingData研发副总阎志涛:移动互联网大数据处理系统架构
27页PPT|以珍爱网为例,如何构建有业务价值的数据分析系统?
国外数据新闻资源分享
21页PPT重磅发布:Mariana——腾讯深度学习平台的进展与应用
从0到100——知乎架构变迁史
PPT解读:百度大数据质量保障方案探索
45页PPT|大数据环境下实现一个O2O通用推荐引擎的实践
从数据看豆瓣兴衰
深度学习系列:解密最接近人脑的智能学习机器——深度学习及并行化实现(四)
重磅推荐:129页PPT讲述移动时代创业黄金法则 via:腾讯企鹅智酷
重磅推荐:大数据工程师飞林沙的年终总结&算法数据的思考
OpenKN——网络大数据时代的知识计算引擎
大数据下城市计算的典型应用
技术贴:大数据告诉你,如何给微信公众号文章取标题?
你的QQ暴露了你的心——QQ大数据及其应用介绍PPT
如何从企业报表看企业的生存能力?
实用的大数据技巧合集
技术帝揭秘:充电宝是如何盗取你的个人隐私的?
重磅!50页PPT揭秘腾讯大数据平台与推荐应用架构
原创教程:饼图之复合饼图与双层饼图(1)
PPT:大数据时代的设计特点——不了解这个你做不了今天的设计
教程贴:如何用方程式写春联?
原创教程:如何用Excel制作简易动态对比图
深度译文:机器学习那些事
教程帖:数学之美——手把手教你用Excel画心(动态图)
董老师走进斯坦福,聊聊硅谷创业公司和大数据的事儿(附课件PPT下载)
【限时】年度钜献,108个大数据文档PDF开放下载
董飞专栏:大数据入门——大数据相关技术、Hadoop生态、LinkedIn内部实战
亿级用户下的新浪微博平台架构
一张图了解磁盘里的数据结构
浅析数据化设计思维在阿里系产品的应用
美团推荐算法实践
一个P2P创业公司有哪些部门,都是做什么的?
一个P2P平台的详细运营框架是怎样的?
机器学习中的算法——决策树模型组合之随机森林与GBDT
神经网络简史
58页PPT看懂互联网趋势,大数据/物联网/云计算/4G都有了
广点通背后的大数据技术秘密——大规模主题模型建模及其在腾讯业务中的应用(附PPT)
微信红包之CBA实践PPT——移动互联网海量访问系统设计
一文读懂机器学习,大数据/自然语言处理/算法全有了……
搜狐新闻客户端的背后大数据技术原理——推荐系统(PPT)
原创教程:用Excel做动态双层饼图
半小时读懂PMP私有广告交易市场
怎样分析样本调研数据(译)
PPT:支付宝背后的大数据技术——DataLab、Higo的实践及应用
大数据技术人员的工具包——开源大数据处理工具list(限时下载)
计算机视觉:随机森林算法在人体识别中的应用
24页PPT:机器学习——支持向量机SVM简介(附下载)
互联网高手教你如何搜集你想要的信息
深度:对地观测大数据处理、挑战与思考
原创教程:用Excel做饼图之复合饼图与双层饼图(2)
移动大数据时代: 无线网络的挑战与机遇(附pdf下载)
Excel使用技巧——25招必学秘技
【年度热门】加上这些 Excel 技能点,秒杀众人(多图)
原创教程:用Excel做纵向折线图
知识图谱——机器大脑中的知识库
何明科专栏:用数据化的方式解析投资条款
DT时代,如何用大数据分析创造商业价值(23页PPT)
MIT牛人梳理脉络详解宏伟现代数据体系
你的老婆是怎么算出来的?揭秘佳缘用户推荐系统
飞林沙:商品推荐算法&推荐解释
PPT:如何成为真正的数据架构师?(附下载)
开源大数据查询分析引擎现状
董飞专栏:打造数据产品必知秘籍
译文:如何做强大又漂亮的信息图
如何使用Amazon Machine Learning构建机器学习预测模型
如何运用数据协助货架管理(内附26张PPT)
SVM算法
主流大数据系统在后台的层次角色及数据流向
PPT:阿里全息大数据构建与应用
人脸识别技术大总结——Face Detection & Alignment
教程:用Excel制作成对条形图
易观智库:大数据下的用户分析及用户画像(18页PPT附下载)
技术向:如何设计企业级大数据分析平台?
电商数据分析基础指标体系
IBM SPSS Modeler 决策树之银行行销预测应用分析
拓扑数据分析与机器学习的相互促进
基于 R 语言和 SPSS 的决策树算法介绍及应用
用php做爬虫 百万级别知乎用户数据爬取与分析
另类新浪微博基本数据采集方法
以10万+阅读的文章为例 教你做微信公众号的运营数据分析
破解数据三大难题:变现?交易?隐私?
微店的大数据平台建设实践与探讨
阿里巴巴PPT:大数据基础建议及产品应用之道
基于社会媒体的预测技术
人工智能简史
技巧:演讲中怎样用数据说话
马云和小贝选谁做老公?写给非数据人的数据世界入门指南
掘金大数据产业链:上游资源+中游技术+下游应用
原创教程:手把手教你用Excel做多层折线图
销售分析:如何从数据指标发现背后的故事
如何一步步从数据产品菜鸟走到骨干数据产品
也来谈谈微博的用户画像
行走在网格之间:微博用户关系模型
如何拍出和明星一样美爆的自拍照?斯坦福大学用卷积神经网络建模告诉你
运营商如何玩转大数据? 浙江移动云计算和大数据实践(PPT附下载)
大数据分析的集中化之路 建设银行大数据应用实践PPT
腾讯防刷负责人:基于用户画像大数据的电商防刷架构
创业提案的逻辑
友盟分享 | 移动大数据平台架构思想以及实践经验
寻路推荐 豆瓣推荐系统实践之路
“小数据”的统计学
重磅!8大策略让你对抗机器学习数据集里的不均衡数据
小团队撬动大数据——当当推荐团队的机器学习实践
微博推荐架构的演进
科普文 手把手教你微信公众号数据分析
信息图制作的六个注意点
【权利的游戏】剧透新玩法:情理之中?意料之外
推荐系统(Recommender System)的技术基础
核心算法 谷歌如何从网络的大海里捞到针
Quora数据科学家和机器学习工程师是如何合作的
阿里巴巴PPT:大数据下的数据安全
数据建模那点事儿
全民拥抱Docker云–Lhotse系统经验分享
实时股票分析系统的架构与算法
架构师必看 京东咚咚架构演进
什么叫对数据敏感?怎样做数据分析?
推荐系统基础知识储备
刘德寰:数据科学的整合与细分 数据科学的七个危险趋势(视频)
实际工作中,如何做简单的数据分析?
分布式前置机器学习在威胁情报中的应用(附PPT下载)
数据科学 怎样进行大数据的入门级学习?
扛住100亿次请求 如何做一个“有把握”的春晚红包系统?(PPT下载)
从 LinkedIn 的数据处理机制学习数据架构
大数据会如何改变管理咨询公司(I)
优秀大数据GitHub项目一览
生硬的数字和数据新闻:这么近,那么远
经典大数据架构案例:酷狗音乐的大数据平台重构(长文)
揭秘中兴大数据在银行领域的系统部署
基于大数据的用户画像构建(理论篇)
【R】支持向量机模型实现
数据图处处有陷阱?五个例子教你辨真伪
如何用R绘制地图
你确定你真的懂用户画像?
数据模型需要多少训练数据?
【接地气】01 数据报表的颜色怎么配
游戏价值和数据分析新思路
【R】异常值检测
快的打车架构实践
豆瓣还是朋友圈:大数据、新方法和日常问
PPT数据图表,怎么做才好看?
大道至简的数据体系构建方法论
数据的误区及自身业务
新浪微博的用户画像是怎样构建的?
面试干货!21个必知数据科学面试题和答案part1(1-11)
易观智库:中国大数据产业生态图谱2016(附下载)
Airbnb的数据基础架构
50PB海量数据排序,谷歌是这么做的
大数据时代工程师如何应对–今日头条走进硅谷技术讲座
D3.js教学记(下)
D3.js教学记(上)
飞林沙:企业级服务公司如何赚钱?只有平台级产品才有大数据的理论
一个母婴电子商务网站的大数据平台及机器学习实践
7大板块 组成数据分析师的完整知识结构
干货:SaaS领域如何分析收入增长?
学术 | 词嵌入的类比特性有实用意义吗?
6个用好大数据的秘诀
一个数据库外行眼中的微信优化 (附专家补充)
大数据调研,如何实现快全准?
数据大师Olivier Grisel给志向高远的数据科学家的指引
数据堂肖永红:数据交易的是使用权或数据的增值,而不是数据本身(PPT附下载)
淘宝商品详情平台化思考与实践
刘译璟:百分点大数据理念和实践(图文+PPT下载)
如何快速搞定一份看起来还不错的演示文档?
【BABY夜谈大数据】决策树
数据驱动设计:数据处理流程、分析方法和实战案例
美图数据总监:Facebook的法宝,我们在产品中怎么用?
树的内核:量化树结构化数据之间的相似性
拿到用户数据之后,LinkedIn怎么赚钱?
GrowingIO张溪梦:增长黑客的核心 企业应该重视产品留存率(附PPT下载)
[译]Airbnb是如何使用数据理解用户旅行体验的?
微博推荐数据服务代理: hyper_proxy的设计和实现
星图数据谷熠:消费领域DaaS 大数据重构未来商业游戏规则(附PPT下载)
鲍忠铁:TalkingData大数据技术与应用实践(PPT下载)
【干货教材】数据分析VS业务分析需求
九枝兰专访:数字营销的核心—企业如何使用数据管理平台(DMP)进行精准营销
我们的应用系统是如何支撑千万级别用户的
R应用空间数据科学
Excel进行高级数据分析(上)
Excel进行高级数据分析(下)
国内各大互联网公司2.0版技术站点收集
网站数据分析思路导图
大数据分析报表设计开发要素
大数据需要的12个工具 推荐
YARN/MRv2 Resource Manager深入剖析—NM管理
YARN/MRv2 Resource Manager深入剖析—RMApp状态机分析
Hadoop 1.0与Hadoop 2.0资源管理方案对比
Hadoop 2.0中单点故障解决方案总结
Hadoop 2.0 (YARN)中的安全机制概述
Hadoop 新特性、改进、优化和Bug分析系列1:YARN-378
Hadoop 新特性、改进、优化和Bug分析系列2:YARN-45
Hadoop 新特性、改进、优化和Bug分析系列3:YARN-392
Hadoop版本选择探讨
探究提高Hadoop稳定性与性能的方法
《Effective C++》读书笔记(第一部分)
Hadoop分布式环境下的数据抽样
Hadoop计算能力调度器算法解析
如何编写Hadoop调度器
数据结构之红黑树
Hadoop pipes设计原理
《C++ Primer plus》学习笔记之”类”
《C++ Primer plus》学习笔记之”类继承”
《C++ Primer plus》学习笔记之”C++中的代码重用”
《C++ Primer plus》学习笔记之”异常”
《C++ Primer plus》学习笔记之”RTTI”
Hadoop pipes编程
Hadoop Streaming高级编程
《C++ Primer plus》学习笔记之”标准模板库”
《C++ Primer plus》学习笔记之”输入输出库”
Linux Shell 命令总结
算法之图搜索算法(一)
awk使用总结
素数判定算法
《C++ Primer plus》学习笔记之“函数探幽”
使用Thrift RPC编写程序
如何在Hadoop上编写MapReduce程序
怎样从10亿查询词找出出现频率最高的10个

大数据分析报表设计开发要素

于2017-04-01由小牛君创建

分享到:



1. 背景
 
随着企业对数据价值的认识越来越高,数据分析类项目也随之增加,尤其是近一段时间大数据时代的到来,数据分析已经是必不可少的内容。其中数据分析结果以报表形式呈现给用户,是各项目的重要组成部分。但是这些报表的用户的使用情况如何,用户是否满意?
 
2. 报表的重要性
 
作为数据分析项目,包括了原始数据获取及处理,数据分析整理,报表展现等多个部分组成,但是从用户角度来讲,他只能看到报表展现,他看不到项目的后台处理过程。即使你后台做的再好,数据再怎么稳定,处理速度再怎么快,数据分析再怎么有价值,但是不能通过报表展现呈现给用户,还是没有用。所以报表的设计就在数据分析项目中显得非常重要。
 
3. 报表的价值
 
报表的价值并不是实现报表的过程花了很多的时间,也不是实施的过程中用了多么先进的技术。所以不要过分的强调你做了什么,而是要关注你为客户带来了什么。其实报表给用户带来的价值最多的体现在如下两个方面:
 
3.1. 节省人力成本
 
节省人力成本非常好理解,那我们要做的就是通过报表节省更多的人力成本。做用户需要的内容,那么如何才能知道我设计的内容用户喜不喜欢了,主要从两个方面来衡量,一个是用户的粘性,一个是用户的数量,只要用户愿意经常使用说明我们做的东西对他有帮助,既然有帮助可能就能节省人力成本,而用户的数量越大说明节约的人力成本越多,自然而然的我们的报表价值越大。
 
3.2. 辅助分析决策
 
通过我们的报表分析能够使用户发现以前很难发现的问题,并且发现问题后,不再凭感觉拍头脑决策,而可以根据报表中的数据来支持决策。决策避免了感官,更加注重数据支持和理性决策。一个正确的决策到底能够该用户创造多大的价值这个还真不好衡量,但是我们可以粗略的认为用户级别越高决策的价值越大,所以我们努力的方向就是不仅仅一线的用户愿意使用我们的报表,中层领导干部甚至是高层领导也愿意使用我们的报表分析。使我们的报表分析价值最大化。
 
4. 报表的设计要素
 
4.1. 以人为本
 
报表可以认为是我们的一种服务手段,我们的目标就是用户觉得有价值,愿意用。所以有时候不是我们设计以及开发人员觉得好就好,而是要从用户角度出发,让用户觉得好才是最重要的。
 
ü 高层领导:简洁明了,少操作,直接出结果。
 
作为高层领导,没有太多的时间去深入研究报表的细节,因此报表要直接把结果以最简单的方式呈现,并且尽量减少操作,能滚动页面的就不要另外加页标签。
 
ü 中层领导:重点突出,分析深入
 
中层领导,一般起到承上启下的作用,既要向领导汇报,又要向下安排具体工作。因此高层领导知道的内容中层领导必须知道,当然必须是权限范围内的信息,要不然高层都了解的问题中层领导不知道肯定是工作不到位的体现,并且还要对问题有深入的分析,一方面向领导汇报问题的解决方案,一方面要先下安排工作,解决具体问题。
 
ü 一线人员:解决具体问题,注重实用性
 
作为一线人员,不需要太多的分析思想,也不需要重大的辅助决策,他们更关心的是帮组他们提高工作效率,解决实际具体的问题,所以要求使用简单,有针对性,这才是最重要的。
 
4.2. 目标明确,
 
做一张表每一个图,都要考虑这个图主要起到什么作用,能为用户了解哪些信息,发现哪些问题,目前的指标选择是否合理,往往目标明确以后才能选择最好的指标(这里的指标说的是衍生指标,例如由用户数衍生的用户增长率等等)
 
结合报表的上下文,每一部分在整体的报表系统中又是起到了什么作用。
 
4.3. 重点突出
 
我们通过表格或者图形向用户传达的信息一定要明了,千万不要让用户去找,事实上一般我们的分析系统很多的功能都不需要用户每天进行访问的,所以报表的使用者对于报表的结构不一定非常熟悉,特别的系统刚上线的时候,如何能够让陌生的用户很快的了解报表中有价值的信息,方便用户理解就变得非常重要。例如表格中重点的指标尽量靠左,如果是排名或者预警要以特别的颜色或者标志进行区分等等。
 
4.4. 业务划分为主,指标划分为辅
 
我们服务的客户也有他们的工作,他们的工作内容也往往是围绕业务展开的,因此一个用户往往需要的指标是多方面的,例如即需要用户信息,有需要销售金额信息,这些信息都和他的工作密切相关,因此设计的时候应该以业务为主,这样共更容易满足用户的需求,而以指标划分为辅能够使指标归类更加明确特别是权限控制更加合理,并且可以把指标划分作为分析的中间层数据,以备后续功能拓展使用。
 
以业务划分为,产品,运营,销售,客服,市场,财务,高层领导等进行划分
 
以指标划分,用户类指标,金额指标,流量类指标等等。
 
5. 项目实施要点
 
5.1. 确认使用对象
 
使用人员的不同决定了报表的设计风格的不同,同时也是报表项目实施前项目价值的有效评估,知己知彼百战不殆,因此这一块是非常重要的。特别是有些项目客户安排了具体项目接口人,他是所有需求的接口,但是他本人并不一定是报表的直接使用者,所以要尽量获取报表直接使用人的具体信息,甚至想办法获取第一手的报表使用者的直接需求。
 
5.2. 挖掘业务需求
 
为什么是挖掘需求而不是确认需求?一般来讲做其他的项目,客户提出的需求我们只要针对可行性进行需求确认即可,尽管可能要确认多次,但是我们的重点确实是确认。而数据分析报表类需求,也可能是项目的特殊性,一方面用户有想要的东西,但是提不出需求,另一方面用户提出的需求与其实际想要的东西有差距,为了能更明确的知道用户原始的目的,我们必须要挖掘用户的需求,利用我们的专业知识进行引导,帮助用户完善需求,而不是简单的确认需求。
 
5.3. 缩短开发人员和用户之间的距离
 
报表的设计对用户体验有很大的影响,同样的开发也有很多细节也影响用户的体验,毕竟开发人员才能实际接触数据,由于数据的多样性,有很多问题在设计上是没办法完全想到的,因此需要开发人员也要了解用户的原始需求,根据用户的原始需求对于设计上的不足提出自己的开发意见,毕竟作为项目组成员考虑问题的角度不同,有很多时候这些意见还是非常重要的。
 
一般项目团队不大的时候,可以适当的让开发参与各阶段的项目设计评审,以及一些直接或者间接的用户交流(比如用户交流会议纪要);其次提交给开发需求详细设计的同时,最好能提供用户的原始需求,以及相关的原始需求资料,帮助开发在碰到设计上的问题的时候可以提出自己的意见。
 
5.4. 提高开发人员的报表设计水平
 
开发人员不仅能够按照产品设计的要求完成产品的开发,同时也能根据开发自身的优势(了解底层数据),参与到报表的设计和完善,只有开发人员具有较强的报表设计能力,才能保证提出的设计意见是客观的,对满足用户需求有帮助的。
 
5.5. 加大评审力度
 
报表项目的需求变更几乎是其他项目的2.5倍,这是由项目本身的特点决定的,因此在需求设计的时候要不断的进行评审,拷问每一个图,每一个表,每一个字段到底能帮助用户做什么,评审通过的设计才能全力开发。可以用固定时间节点评审和临时性评审相结合的方式进行。
 
5.6. 建立报表使用监控,加大回访

  • 报表监控

监控包括两个方面:报表管理的监控,使用情况的监控
 
报表的管理监控可以第一时间发现报表系统的运行过程中出现的问题,并且及时跟进解决,保证用户的友好体验。
 
用户使用情况监控可以使我们对用户的报表使用情况更加的了解,发现用户应用和我们的预期是否存在较大的差别,更好的发现我们报表设计的不足,及时的对报表进行改进。

  • 加大回访

了解用户使用过程中的问题,主动询问,已达到修改的目的(实际上可能成为项目的二期需求)
 
5.7. 不断修改使报表不断完善
 
样式和内容:用户很多情况下是看到报表以后才会有进一步的想法,可能是发现原有功能的问题或者不足,也可能是想到了新的功能,我们要做的就是逐渐的摸索用户的使用习惯,不断丰富用户的内容需求。
 
数据质量:报表的数据质量受多方面因数影响,原始数据的因素,需求定义的因素,程序开发的因素,业务系统变更的因素等等。一开始就要求报表数据质量百分百正确是不可能的,尤其是报表相对比较多的时候,因此要想达到非常完美的数据质量,需要不断修改和完善,查找问题原因,并设计修改方案,开发和测试,这将花费比较多的时间。
 
5.8. 保证用户粘性

  • 报表的价值体现有时是连续性的,有时是间歇性的,有时是一次性的。尽量提高报表中体现连续价值,或者间歇性价值的功能模块的比例,适当的做一些价值非常高的一次性分析内容。
  • 连续性价值:例如异常预警监控,一线人员的服务支持系统
  • 间歇性价值:例如月度考核相关分析
  • 一次性价值:例如某次营销效果的分析

6. 报表设计常见问题
 
6.1. 内容丰富重点不突出
 
一张报表中涵盖的信息很丰富,字段很多,记录数也很多甚至可以进行翻页,但是这样的一个报表,用户的着眼点在哪里,哪些才是整张报表的核心内容必须突显出来。尽量不要让用户自己去分析,自己去查找需要的内容。把用户最需要的东西放在最显著的位置,并且进行突出显示。有必要的话也可以把报表进行拆分。
 
6.2. 指标与衍生指标取舍不合理
 
很多指标都有一些衍生指标,并不是只有后台数据库里面存在的指标才能展现,也不是一定要展现绝对量,有时指标稍微变换一下就能得到意想不到的效果,实际上有时候相对量更能反映事物的本质。不要为了页面的效果简单的罗列指标。
 
最常用的衍生指标:同比,环比,占比,累计占比等等
 
6.3. 指标设计与业务不符
 
在做报表分析的过程中,不少指标单纯从指标的合理性角度看是没有问题的,但是结合业务逻辑,有些就是不合理的。例如最近一年用户量的日趋势图,每天的用户变化可能是波动比较大的,一年的趋势变化根本看不出什么;我们更关注的是最近几天用户量的变化情况从而起到预警的作用,对于长时间的趋势(一年),我们更应该采用的是月去趋势或者是周趋势,而不应该是日趋势图。
 
6.4. 数据自相矛盾
 
随着报表的不断增加,很多指标会出现关联交叉等等,有时会出现同一个指标在不同的地方值不相同,或者出现逻辑矛盾。
 
例如:
1.一年内12个月的每个月流量的和 全国每个省一年流量的和
2.当期的用户数上期用户数 + 新增用户 – 流失用户
 
解决办法:
1.模型设计上相同指标统一规则,尽量统一出处,减少出错概率。构建数据中间层,实现指标复用。
2.加强维表完备性监控和缺失值处理,因为绝大部分数据逻辑问题是由于维表或者缺失值引起的。
3.加强开发人员与业务系统人员的沟通,避免业务逻辑理解错误,提高开发人员的谨慎处理数据的能力,时刻检查数据的完备性。
 
6.5. 把报表做成一个查询系统
 
功能很全面,用户想要什么数据都可以自己来查询,实际上这就说明我们的报表没有做到位,什么都可以查意味着查完以后要用户自己进行二次组织,二次分析用户真正想要的东西,我们还有很大的分析空间没有给用户做完,还没有把我们的专业性体现出来。
6.6. 按照客户的要求做,却不能满足客户的需求。
 
前文实际上已经提到,用户有时提的要求就不能满足用户自己的实际需求,这是经常有的事情,虽然我们完全按照用户的要求做了,甚至有时候还超出了用户所想,可是最终还是没人用。
 
要想解决这个问题,一方面我们要从源头出发,挖掘用户的需求,做用户想要的,从而避免这种现象的出现;另一方面我们要加强监控,并及时发现用户不适用报表的原因,和用户沟通和用户反馈,及时修改。
 
7. 总结
 
报表设计一门非常复杂的学问,很多问题没有完全正确的答案,因使用场景的变化,原来合理的设计换了一个场景也许就不适用了,但只要让用户认可,用户习惯使用,并且依赖我们的报表,那么我们就是成功的。
 
本文中的一些想法与设计,都是针对于如何把报表产品向着尽善尽美的方向发展而提出的,实际上由于受到开发成本,以及一些项目运营策略的考虑,实施的过程也可以灵活变通,做到产品利益服从与公司整体利益才是最可取的。
 
End.