大数据培训新三板挂牌机构 股票代码:837906 | EN CN
【小牛原创】Spark SQL 从入门到实战 -- spark sql 1.6版本相关api
【小牛原创】Spark SQL 从入门到实战 -- 概述
Spark Streaming:大规模流式数据处理
spark RDD 相关需求
spark RDD 高级应用
Spark手册 - load&save
Spark手册 - debug
Spark手册 - cache&checkpoint
Spark手册 - RDD Action API
Spark手册 - Partitioner源码
Spark手册 - RDD Transformation API
Spark手册 - RDD的依赖关系
Spark手册 - RDD入门
Spark手册 - 远程debug
Spark手册 - 在IDEA中编写WordCount程序(3)
Spark手册 - 在IDEA中编写WordCount程序(2)
Spark手册 - 在IDEA中编写WordCount程序(1)
Spark手册 - 执行Spark程序
Spark手册 - 集群安装
20页PPT|视频类网站大数据生态 Spark在爱奇艺的应用实践
Spark机器学习入门实例——大数据集(30+g)二分类
Spark官方文档中文翻译:Spark SQL 之 Data Sources
使用Spark MLlib来训练并服务于自然语言处理模型
Spark知识体系完整解读
案例 :Spark应用案例现场分享(IBM Datapalooza)
最全的Spark基础知识解答
Spark在GrowingIO数据无埋点全量采集场景下的实践
Apache Spark探秘:三种分布式部署方式比较
Apache Spark探秘:多进程模型还是多线程模型?
Apache Spark探秘:实现Map-side Join和Reduce-side Join
Apache Spark探秘:利用Intellij IDEA构建开发环境
spark on yarn的技术挑战
Apache Spark学习:将Spark部署到Hadoop 2.2.0上
Hadoop与Spark常用配置参数总结
基于Spark Mllib,SparkSQL的电影推荐系统
spark作业调优秘籍,解数据倾斜之痛
Spark入门必学:预测泰坦尼克号上的生还情况
小牛学堂浅谈基于Spark大数据平台日志审计系统的设计与实现
【Hadoop Summit Tokyo 2016】使用基于Lambda架构的Spark的近实时的网络异常检测和流量分析
Spark编程环境搭建经验分享
Spark技术在京东智能供应链预测的应用
spark中textFile、groupByKey、collect、flatMap、map结合小案例
Spark中DataFrame的schema讲解
深度剖析Spark分布式执行原理
【Spark Summit East 2017】从容器化Spark负载中获取的经验
内存分析技术哪家强?Spark占几何
Spark系列之一:Spark,一种快速数据分析替代方案
6种最常见的Hadoop和Spark项目
Hadoop vs Spark
Hadoop与Spark常用配置参数总结
Spark RPC通信层设计原理分析
Spark Standalone架构设计要点分析
Spark UnifiedMemoryManager内存管理模型分析
网易的Spark技术分享

Apache Spark探秘:三种分布式部署方式比较

于2017-03-29由小牛君创建

分享到:



目前Apache Spark支持三种分布式部署方式,分别是standalone、spark on mesos和 spark on YARN,其中,第一种类似于MapReduce 1.0所采用的模式,内部实现了容错性和资源管理,后两种则是未来发展的趋势,部分容错性和资源管理交由统一的资源管理系统完成:让Spark运行在一个通用的资源管理系统之上,这样可以与其他计算框架,比如MapReduce,公用一个集群资源,最大的好处是降低运维成本和提高资源利用率(资源按需分配)。本文将介绍这三种部署方式,并比较其优缺点。

standalone模式,即独立模式,自带完整的服务,可单独部署到一个集群中,无需依赖任何其他资源管理系统。从一定程度上说,该模式是其他两种的基础。借鉴Spark开发模式,我们可以得到一种开发新型计算框架的一般思路:先设计出它的standalone模式,为了快速开发,起初不需要考虑服务(比如master/slave)的容错性,之后再开发相应的wrapper,将stanlone模式下的服务原封不动的部署到资源管理系统yarn或者mesos上,由资源管理系统负责服务本身的容错。目前Spark在standalone模式下是没有任何单点故障问题的,这是借助zookeeper实现的,思想类似于Hbase master单点故障解决方案。将Spark standalone与MapReduce比较,会发现它们两个在架构上是完全一致的:

1)  都是由master/slaves服务组成的,且起初master均存在单点故障,后来均通过zookeeper解决(Apache MRv1的JobTracker仍存在单点问题,但CDH版本得到了解决);

2) 各个节点上的资源被抽象成粗粒度的slot,有多少slot就能同时运行多少task。不同的是,MapReduce将slot分为map slot和reduce slot,它们分别只能供Map Task和Reduce Task使用,而不能共享,这是MapReduce资源利率低效的原因之一,而Spark则更优化一些,它不区分slot类型,只有一种slot,可以供各种类型的Task使用,这种方式可以提高资源利用率,但是不够灵活,不能为不同类型的Task定制slot资源。总之,这两种方式各有优缺点。

Spark On Mesos模式。这是很多公司采用的模式,官方推荐这种模式(当然,原因之一是血缘关系)。正是由于Spark开发之初就考虑到支持Mesos,因此,目前而言,Spark运行在Mesos上会比运行在YARN上更加灵活,更加自然。目前在Spark On Mesos环境中,用户可选择两种调度模式之一运行自己的应用程序(可参考Andrew Xia的“Mesos Scheduling Mode on Spark”):

1)   粗粒度模式(Coarse-grained Mode):每个应用程序的运行环境由一个Dirver和若干个Executor组成,其中,每个Executor占用若干资源,内部可运行多个Task(对应多少个“slot”)。应用程序的各个任务正式运行之前,需要将运行环境中的资源全部申请好,且运行过程中要一直占用这些资源,即使不用,最后程序运行结束后,回收这些资源。举个例子,比如你提交应用程序时,指定使用5个executor运行你的应用程序,每个executor占用5GB内存和5个CPU,每个executor内部设置了5个slot,则Mesos需要先为executor分配资源并启动它们,之后开始调度任务。另外,在程序运行过程中,mesos的master和slave并不知道executor内部各个task的运行情况,executor直接将任务状态通过内部的通信机制汇报给Driver,从一定程度上可以认为,每个应用程序利用mesos搭建了一个虚拟集群自己使用。

2)   细粒度模式(Fine-grained Mode):鉴于粗粒度模式会造成大量资源浪费,Spark On Mesos还提供了另外一种调度模式:细粒度模式,这种模式类似于现在的云计算,思想是按需分配。与粗粒度模式一样,应用程序启动时,先会启动executor,但每个executor占用资源仅仅是自己运行所需的资源,不需要考虑将来要运行的任务,之后,mesos会为每个executor动态分配资源,每分配一些,便可以运行一个新任务,单个Task运行完之后可以马上释放对应的资源。每个Task会汇报状态给Mesos slave和Mesos Master,便于更加细粒度管理和容错,这种调度模式类似于MapReduce调度模式,每个Task完全独立,优点是便于资源控制和隔离,但缺点也很明显,短作业运行延迟大。

Spark On YARN模式。这是一种最有前景的部署模式。但限于YARN自身的发展,目前仅支持粗粒度模式(Coarse-grained Mode)。这是由于YARN上的Container资源是不可以动态伸缩的,一旦Container启动之后,可使用的资源不能再发生变化,不过这个已经在YARN计划(具体参考:https://issues.apache.org/jira/browse/YARN-1197)中了。

总之,这三种分布式部署方式各有利弊,通常需要根据公司情况决定采用哪种方案。进行方案选择时,往往要考虑公司的技术路线(采用Hadoop生态系统还是其他生态系统)、服务器资源(资源有限的话就不要考虑standalone模式了)、相关技术人才储备等。