【小牛原创】Spark SQL 从入门到实战 -- spark sql 1.6版本相关api
【小牛原创】Spark SQL 从入门到实战 -- 概述
Spark Streaming:大规模流式数据处理
spark RDD 相关需求
spark RDD 高级应用
Spark手册 - load&save
Spark手册 - debug
Spark手册 - cache&checkpoint
Spark手册 - RDD Action API
Spark手册 - Partitioner源码
Spark手册 - RDD Transformation API
Spark手册 - RDD的依赖关系
Spark手册 - RDD入门
Spark手册 - 远程debug
Spark手册 - 在IDEA中编写WordCount程序(3)
Spark手册 - 在IDEA中编写WordCount程序(2)
Spark手册 - 在IDEA中编写WordCount程序(1)
Spark手册 - 执行Spark程序
Spark手册 - 集群安装
20页PPT|视频类网站大数据生态 Spark在爱奇艺的应用实践
Spark机器学习入门实例——大数据集(30+g)二分类
Spark官方文档中文翻译:Spark SQL 之 Data Sources
使用Spark MLlib来训练并服务于自然语言处理模型
Spark知识体系完整解读
案例 :Spark应用案例现场分享(IBM Datapalooza)
最全的Spark基础知识解答
Spark在GrowingIO数据无埋点全量采集场景下的实践
Apache Spark探秘:三种分布式部署方式比较
Apache Spark探秘:多进程模型还是多线程模型?
Apache Spark探秘:实现Map-side Join和Reduce-side Join
Apache Spark探秘:利用Intellij IDEA构建开发环境
spark on yarn的技术挑战
Apache Spark学习:将Spark部署到Hadoop 2.2.0上
Hadoop与Spark常用配置参数总结
基于Spark Mllib,SparkSQL的电影推荐系统
spark作业调优秘籍,解数据倾斜之痛
Spark入门必学:预测泰坦尼克号上的生还情况
小牛学堂浅谈基于Spark大数据平台日志审计系统的设计与实现
【Hadoop Summit Tokyo 2016】使用基于Lambda架构的Spark的近实时的网络异常检测和流量分析
Spark编程环境搭建经验分享
Spark技术在京东智能供应链预测的应用
spark中textFile、groupByKey、collect、flatMap、map结合小案例
Spark中DataFrame的schema讲解
深度剖析Spark分布式执行原理
【Spark Summit East 2017】从容器化Spark负载中获取的经验
内存分析技术哪家强?Spark占几何
Spark系列之一:Spark,一种快速数据分析替代方案
6种最常见的Hadoop和Spark项目
Hadoop vs Spark
Hadoop与Spark常用配置参数总结
Spark RPC通信层设计原理分析
Spark Standalone架构设计要点分析
Spark UnifiedMemoryManager内存管理模型分析
网易的Spark技术分享

Apache Spark探秘:利用Intellij IDEA构建开发环境

于2017-03-29由小牛君创建

分享到:



前段时间写了几篇使用Eclipse构建Spark源码阅读和开发环境的文章。经过一段时间的试用,发现Eclipse在Scala支持方面很不完善,体验非常差,因此转而使用Intellij IDEA,本文介绍如何使用Intellij IDEA构建Spark源码阅读和开发环境。

(1)准备工作

1)  安装JDK 6或者JDK 7

2)  安装scala 2.10.x (注意版本)

2)下载Intellij IDEA最新版(本文以IntelliJ IDEA Community Edition 13.1.1为例说明,不同版本,界面布局可能不同):http://www.jetbrains.com/idea/download/

3)将下载的Intellij IDEA解压后,安装scala插件,流程如下:

依次选择“Configure”–> “Plugins”–> “Browse repositories”,输入scala,然后安装即可

(2)搭建Spark源码阅读环境(需要联网)

一种方法是直接依次选择“import project”–> 选择spark所在目录 –> “SBT”,之后intellij会自动识别SBT文件,并下载依赖的外部jar包,整个流程用时非常长,取决于机器的网络环境(不建议在windows下操作,可能遇到各种问题),一般需花费几十分钟到几个小时。注意,下载过程会用到git,因此应该事先安装了git。

第二种方法是首先在linux操作系统上生成intellij项目文件,然后在intellij IDEA中直接通过“Open Project”打开项目即可。在linux上生成intellij项目文件的方法(需要安装git,不需要安装scala,sbt会自动下载)是:在spark源代码根目录下,输入sbt/sbt gen-idea

注:如果你在windows下阅读源代码,建议先在linux下生成项目文件,然后导入到windows中的intellij IDEA中。

(3)搭建Spark开发环境

在intellij IDEA中创建scala project,并依次选择“File”–> “project structure” –> “Libraries”,选择“+”,将spark-hadoop 对应的包导入,比如导入spark-assembly_2.10-0.9.0-incubating-hadoop2.2.0.jar(只需导入该jar包,其他不需要),如果IDE没有识别scala 库,则需要以同样方式将scala库导入。之后开发scala程序即可:

编写完scala程序后,可以直接在intellij中,以local模式运行,方法如下:

点击“Run”–> “Run Configurations”,在弹出的框中对应栏中填写“local”,表示将该参数传递给main函数,如下图所示,之后点击“Run”–> “Run”运行程序即可。

如果想把程序打成jar包,通过命令行的形式运行在spark 集群中,可以按照以下步骤操作:

依次选择“File”–> “Project Structure” –> “Artifact”,选择“+”–> “Jar” –> “From Modules with dependencies”,选择main函数,并在弹出框中选择输出jar位置,并选择“OK”。

最后依次选择“Build”–> “Build Artifact”编译生成jar包。具体如下图所示。