首家大数据培训挂牌机构 股票代码:837906 | EN CN
阿里巴巴菜鸟级数据产品经理半年回顾总结篇
干货教程:如何绘制业务流程图(二)
干货教程:如何绘制业务流程图(一)
技术贴:如何在数据库中秘密地查询隐私数据
攻略教程:信息图(infographic)是怎么做出来的?
分析师一定要看!用数据讲故事的五个步骤
技术篇:怎样玩转千万级别的数据?
北漂书生:大数据时代SEO数据如何搜集和分析
干货,从十大问题重新认识并读懂互联网
相似图片搜索、算法、识别的原理解析(下)
相似图片搜索、算法、识别的原理解析(上)
制作信息图时请遵循这10条原则
提高表格可读性的一些技巧,适用于Excel、PPT等数据报表
实用教程:如何让Excel图表更具“商务气质”?
一张数据信息图是这样制作完成的
菜鸟读财报,如何从上市公司财报中挖情报?
北大数据分析老鸟写给学弟们一封信
如何一步一步制作出高品质数据信息图?
总结:海量数据分析处理的十个方法
【实战经验】数据分析师如何了解老板真正想法?
零售业数据分析那些事儿
数据分析时l常用电子表格公式【大全】
用数据来告诉你 上市公司财报的秘密
这12个数据能 帮你搞定淘宝店铺
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(四)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(三)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(二)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(一)
淘宝网店从激活到挽留,4步走玩转数据营销
文案怎样写才有意思、不空洞、打动人?
入门级扫盲贴:数据分析的步骤有哪些?
关系即数据,论社交媒体的关系转换
数据的力量,苹果教你用数据鄙视竞争对手
谁说文科生不能做数据分析?数据分析入行→技能提升→优势
产品运营数据分析——SPSS数据分组案例
如何追踪iPhone和iPad等移动设备的用户行为数据?
阿里巴巴中国站:用户满意度指标权重计算方法
广告中的AdNetwork、AdExchange、DSP、SSP、RTB和DMP是什么?
信息图制作教程:关于数值的表现
为什么大数据会如此轰动?(值得深度的文章)
多图技术贴:深入浅出解析大数据平台架构
面板数据分析中标准误的估计修正——根据Peterson (2009)的归纳
财务官、投资人、CIO看过来:给企业数据定价
推荐系统中常用算法 以及优点缺点对比
探索Weotta搜索引擎背后的大数据技术
如何识别虚假数据?
为什么我们像驯化小狗那样驯化算法
程序员必须知道的10大基础实用算法及其讲解
电子商务:最影响转化率的九大要素
如何迅速成为一名数据分析师?
想从事大数据、海量数据处理相关的工作,如何自学打基础?
如何用亚马逊弹性MapReduce分析大数据?
译文:机器学习算法基础知识
给hadoop新手的一封信:Hadoop入门自学及对就业的帮助
从入门到精通,我是这样学习算法的
小商家,从老客户身上获取的数据才更有意义
13页PPT讲述:大数据下网站数据分析应用
40页PPT详解:京东大数据基础构架与创新应用
67页PPT解密搜索引擎背后的大技术:知识图谱,大数据语义链接的基石
营销洞察力——10个营销度量指标
技术篇:前端数据之美如何展示?
董飞:美国大数据工程师面试攻略【PPT】
easel:如何制作好的信息图——来自专家的顶级技巧
大数据实操:以3D打印机为例,如何知道卖点有没有市场需求?
大数据建模 需要了解的九大形式
用户画像数据建模方法
从规划开始,公司or企业如何入手和实施大数据?
干货:商品信息数据分析和展现系统的设计与开发
高手教你用Excel制作百度迁徙数据地图
50篇干货:淘宝店/电子商务如何玩转数据分析?
精华索引:大数据实际应用案例50篇
验证最小化可行产品 (MVP) 的 15 种方法
干货:数据分析师的完整知识结构
大数据技术Hadoop面试题,看看你能答对多少?答案在后面
用SPSS做数据分析?先弄懂SPSS的基础知识吧
怎样做出优秀的扁平化设计风格PPT? 扁平化PPT设计手册#3
解答│做大数据过程中遇到的13个问题
40页PPT│社交网络发展的新动力:大数据与众包
以Amazon、豆瓣网为例,探索推荐引擎内部的秘密#1
怎样做出优秀的扁平化设计风格PPT?#2
怎样做出优秀的扁平化设计风格PPT?#1
36页PPT│大数据分析关键技术在腾讯的应用服务创新
如何丰满地做SWOT分析?
【35页PPT】TalkingData研发副总阎志涛:移动互联网大数据处理系统架构
27页PPT|以珍爱网为例,如何构建有业务价值的数据分析系统?
国外数据新闻资源分享
21页PPT重磅发布:Mariana——腾讯深度学习平台的进展与应用
从0到100——知乎架构变迁史
PPT解读:百度大数据质量保障方案探索
45页PPT|大数据环境下实现一个O2O通用推荐引擎的实践
从数据看豆瓣兴衰
深度学习系列:解密最接近人脑的智能学习机器——深度学习及并行化实现(四)
重磅推荐:129页PPT讲述移动时代创业黄金法则 via:腾讯企鹅智酷
重磅推荐:大数据工程师飞林沙的年终总结&算法数据的思考
OpenKN——网络大数据时代的知识计算引擎
大数据下城市计算的典型应用
技术贴:大数据告诉你,如何给微信公众号文章取标题?
你的QQ暴露了你的心——QQ大数据及其应用介绍PPT
如何从企业报表看企业的生存能力?
实用的大数据技巧合集
技术帝揭秘:充电宝是如何盗取你的个人隐私的?
重磅!50页PPT揭秘腾讯大数据平台与推荐应用架构
原创教程:饼图之复合饼图与双层饼图(1)
PPT:大数据时代的设计特点——不了解这个你做不了今天的设计
教程贴:如何用方程式写春联?
原创教程:如何用Excel制作简易动态对比图
深度译文:机器学习那些事
教程帖:数学之美——手把手教你用Excel画心(动态图)
董老师走进斯坦福,聊聊硅谷创业公司和大数据的事儿(附课件PPT下载)
【限时】年度钜献,108个大数据文档PDF开放下载
董飞专栏:大数据入门——大数据相关技术、Hadoop生态、LinkedIn内部实战
亿级用户下的新浪微博平台架构
一张图了解磁盘里的数据结构
浅析数据化设计思维在阿里系产品的应用
美团推荐算法实践
一个P2P创业公司有哪些部门,都是做什么的?
一个P2P平台的详细运营框架是怎样的?
机器学习中的算法——决策树模型组合之随机森林与GBDT
神经网络简史
58页PPT看懂互联网趋势,大数据/物联网/云计算/4G都有了
广点通背后的大数据技术秘密——大规模主题模型建模及其在腾讯业务中的应用(附PPT)
微信红包之CBA实践PPT——移动互联网海量访问系统设计
一文读懂机器学习,大数据/自然语言处理/算法全有了……
搜狐新闻客户端的背后大数据技术原理——推荐系统(PPT)
原创教程:用Excel做动态双层饼图
半小时读懂PMP私有广告交易市场
怎样分析样本调研数据(译)
PPT:支付宝背后的大数据技术——DataLab、Higo的实践及应用
大数据技术人员的工具包——开源大数据处理工具list(限时下载)
计算机视觉:随机森林算法在人体识别中的应用
24页PPT:机器学习——支持向量机SVM简介(附下载)
互联网高手教你如何搜集你想要的信息
深度:对地观测大数据处理、挑战与思考
原创教程:用Excel做饼图之复合饼图与双层饼图(2)
移动大数据时代: 无线网络的挑战与机遇(附pdf下载)
Excel使用技巧——25招必学秘技
【年度热门】加上这些 Excel 技能点,秒杀众人(多图)
原创教程:用Excel做纵向折线图
知识图谱——机器大脑中的知识库
何明科专栏:用数据化的方式解析投资条款
DT时代,如何用大数据分析创造商业价值(23页PPT)
MIT牛人梳理脉络详解宏伟现代数据体系
你的老婆是怎么算出来的?揭秘佳缘用户推荐系统
飞林沙:商品推荐算法&推荐解释
PPT:如何成为真正的数据架构师?(附下载)
开源大数据查询分析引擎现状
董飞专栏:打造数据产品必知秘籍
译文:如何做强大又漂亮的信息图
如何使用Amazon Machine Learning构建机器学习预测模型
如何运用数据协助货架管理(内附26张PPT)
SVM算法
主流大数据系统在后台的层次角色及数据流向
PPT:阿里全息大数据构建与应用
人脸识别技术大总结——Face Detection & Alignment
教程:用Excel制作成对条形图
易观智库:大数据下的用户分析及用户画像(18页PPT附下载)
技术向:如何设计企业级大数据分析平台?
电商数据分析基础指标体系
IBM SPSS Modeler 决策树之银行行销预测应用分析
拓扑数据分析与机器学习的相互促进
基于 R 语言和 SPSS 的决策树算法介绍及应用
用php做爬虫 百万级别知乎用户数据爬取与分析
另类新浪微博基本数据采集方法
以10万+阅读的文章为例 教你做微信公众号的运营数据分析
破解数据三大难题:变现?交易?隐私?
微店的大数据平台建设实践与探讨
阿里巴巴PPT:大数据基础建议及产品应用之道
基于社会媒体的预测技术
人工智能简史
技巧:演讲中怎样用数据说话
马云和小贝选谁做老公?写给非数据人的数据世界入门指南
掘金大数据产业链:上游资源+中游技术+下游应用
原创教程:手把手教你用Excel做多层折线图
销售分析:如何从数据指标发现背后的故事
如何一步步从数据产品菜鸟走到骨干数据产品
也来谈谈微博的用户画像
行走在网格之间:微博用户关系模型
如何拍出和明星一样美爆的自拍照?斯坦福大学用卷积神经网络建模告诉你
运营商如何玩转大数据? 浙江移动云计算和大数据实践(PPT附下载)
大数据分析的集中化之路 建设银行大数据应用实践PPT
腾讯防刷负责人:基于用户画像大数据的电商防刷架构
创业提案的逻辑
友盟分享 | 移动大数据平台架构思想以及实践经验
寻路推荐 豆瓣推荐系统实践之路
“小数据”的统计学
重磅!8大策略让你对抗机器学习数据集里的不均衡数据
小团队撬动大数据——当当推荐团队的机器学习实践
微博推荐架构的演进
科普文 手把手教你微信公众号数据分析
信息图制作的六个注意点
【权利的游戏】剧透新玩法:情理之中?意料之外
推荐系统(Recommender System)的技术基础
核心算法 谷歌如何从网络的大海里捞到针
Quora数据科学家和机器学习工程师是如何合作的
阿里巴巴PPT:大数据下的数据安全
数据建模那点事儿
全民拥抱Docker云–Lhotse系统经验分享
实时股票分析系统的架构与算法
架构师必看 京东咚咚架构演进
什么叫对数据敏感?怎样做数据分析?
推荐系统基础知识储备
刘德寰:数据科学的整合与细分 数据科学的七个危险趋势(视频)
实际工作中,如何做简单的数据分析?
分布式前置机器学习在威胁情报中的应用(附PPT下载)
数据科学 怎样进行大数据的入门级学习?
扛住100亿次请求 如何做一个“有把握”的春晚红包系统?(PPT下载)
从 LinkedIn 的数据处理机制学习数据架构
大数据会如何改变管理咨询公司(I)
优秀大数据GitHub项目一览
生硬的数字和数据新闻:这么近,那么远
经典大数据架构案例:酷狗音乐的大数据平台重构(长文)
揭秘中兴大数据在银行领域的系统部署
基于大数据的用户画像构建(理论篇)
【R】支持向量机模型实现
数据图处处有陷阱?五个例子教你辨真伪
如何用R绘制地图
你确定你真的懂用户画像?
数据模型需要多少训练数据?
【接地气】01 数据报表的颜色怎么配
游戏价值和数据分析新思路
【R】异常值检测
快的打车架构实践
豆瓣还是朋友圈:大数据、新方法和日常问
PPT数据图表,怎么做才好看?
大道至简的数据体系构建方法论
数据的误区及自身业务
新浪微博的用户画像是怎样构建的?
面试干货!21个必知数据科学面试题和答案part1(1-11)
易观智库:中国大数据产业生态图谱2016(附下载)
Airbnb的数据基础架构
50PB海量数据排序,谷歌是这么做的
大数据时代工程师如何应对–今日头条走进硅谷技术讲座
D3.js教学记(下)
D3.js教学记(上)
飞林沙:企业级服务公司如何赚钱?只有平台级产品才有大数据的理论
一个母婴电子商务网站的大数据平台及机器学习实践
7大板块 组成数据分析师的完整知识结构
干货:SaaS领域如何分析收入增长?
学术 | 词嵌入的类比特性有实用意义吗?
6个用好大数据的秘诀
一个数据库外行眼中的微信优化 (附专家补充)
大数据调研,如何实现快全准?
数据大师Olivier Grisel给志向高远的数据科学家的指引
数据堂肖永红:数据交易的是使用权或数据的增值,而不是数据本身(PPT附下载)
淘宝商品详情平台化思考与实践
刘译璟:百分点大数据理念和实践(图文+PPT下载)
如何快速搞定一份看起来还不错的演示文档?
【BABY夜谈大数据】决策树
数据驱动设计:数据处理流程、分析方法和实战案例
美图数据总监:Facebook的法宝,我们在产品中怎么用?
树的内核:量化树结构化数据之间的相似性
拿到用户数据之后,LinkedIn怎么赚钱?
GrowingIO张溪梦:增长黑客的核心 企业应该重视产品留存率(附PPT下载)
[译]Airbnb是如何使用数据理解用户旅行体验的?
微博推荐数据服务代理: hyper_proxy的设计和实现
星图数据谷熠:消费领域DaaS 大数据重构未来商业游戏规则(附PPT下载)
鲍忠铁:TalkingData大数据技术与应用实践(PPT下载)
【干货教材】数据分析VS业务分析需求
九枝兰专访:数字营销的核心—企业如何使用数据管理平台(DMP)进行精准营销
我们的应用系统是如何支撑千万级别用户的
R应用空间数据科学
Excel进行高级数据分析(上)
Excel进行高级数据分析(下)
国内各大互联网公司2.0版技术站点收集
网站数据分析思路导图
大数据分析报表设计开发要素
大数据需要的12个工具 推荐
YARN/MRv2 Resource Manager深入剖析—NM管理
YARN/MRv2 Resource Manager深入剖析—RMApp状态机分析
Hadoop 1.0与Hadoop 2.0资源管理方案对比
Hadoop 2.0中单点故障解决方案总结
Hadoop 2.0 (YARN)中的安全机制概述
Hadoop 新特性、改进、优化和Bug分析系列1:YARN-378
Hadoop 新特性、改进、优化和Bug分析系列2:YARN-45
Hadoop 新特性、改进、优化和Bug分析系列3:YARN-392
Hadoop版本选择探讨
探究提高Hadoop稳定性与性能的方法
《Effective C++》读书笔记(第一部分)
Hadoop分布式环境下的数据抽样
Hadoop计算能力调度器算法解析
如何编写Hadoop调度器
数据结构之红黑树
Hadoop pipes设计原理
《C++ Primer plus》学习笔记之”类”
《C++ Primer plus》学习笔记之”类继承”
《C++ Primer plus》学习笔记之”C++中的代码重用”
《C++ Primer plus》学习笔记之”异常”
《C++ Primer plus》学习笔记之”RTTI”
Hadoop pipes编程
Hadoop Streaming高级编程
《C++ Primer plus》学习笔记之”标准模板库”
《C++ Primer plus》学习笔记之”输入输出库”
Linux Shell 命令总结
算法之图搜索算法(一)
awk使用总结
素数判定算法
《C++ Primer plus》学习笔记之“函数探幽”
使用Thrift RPC编写程序
如何在Hadoop上编写MapReduce程序
怎样从10亿查询词找出出现频率最高的10个

Hadoop计算能力调度器算法解析

于2017-03-26由小牛君创建

分享到:



1. 编写目的

本文描述了hadoop中的计算能力调度器(Capacity Scheduler)的实现算法,计算能力调度器是由Yahoo贡献的,主要是解决HADOOP-3421中提出的,在调度器上完成HOD(Hadoop On Demand)功能,克服已有HOD的性能低效的缺点。它适合于多用户共享集群的环境的调度器。本文解析的计算能力调度器属于Hadoop 0.20.2。本文组织结构如 下:1)编写目的 2)计算能力调度器介绍 3)计算能力调度器算法分析 4)计算能力调度器源代码分析 5)计算能力调度器与公平调度器比较 6)参考资料。

2. 计算能力调度器介绍

Capacity Scheduler支持以下特性:

(1) 计算能力保证。支持多个队列,某个作业可被提交到某一个队列中。每个队列会配置一定比例的计算资源,且所有提交到队列中的作业共享该队列中的资源。

(2) 灵活性。空闲资源会被分配给那些未达到资源使用上限的队列,当某个未达到资源的队列需要资源时,一旦出现空闲资源资源,便会分配给他们。

(3) 支持优先级。队列支持作业优先级调度(默认是FIFO)

(4) 多重租赁。综合考虑多种约束防止单个作业、用户或者队列独占队列或者集群中的资源。

(5) 基于资源的调度。 支持资源密集型作业,允许作业使用的资源量高于默认值,进而可容纳不同资源需求的作业。不过,当前仅支持内存资源的调度。

3. 计算能力调度器算法分析

3.1 涉及到的变量

在capacity中,存在三种粒度的对象,分别为:queue、job和task,它们均需要维护的一些信息:

(1) queue维护的信息

@ queueName:queue的名称

@ ulMin:每个用户的可用的最少资源量(所有用户均相同),需用户在配置文件中指定

@ capacityPercent:计算资源比例,需用户在配置文件中指定

@ numJobsByUser:每个用户的作业量,用以跟踪每个用户提交的作业量,并进行数量的上限限制。

该队列中map 或reduce task的属性:

@ capacity:实际的计算资源量,这个随着tasktracker中slot数目变化(用户可能在添加或减少机器节点)而动态变化,大小为:capacityPercent*mapClusterCapacity/100

@ numRunningTasks:正在running的task数目

@ numSlotsOccupied:正在running的task占用的slot总数,注意,在Capacity Scheduler中,running task与slot不一定是一一对应的,每个task可获取多个slot,这主要是因为该调度支持内存资源调度,某个task可能需要多个slot包含的内存量。

@ numSlotsOccupiedByUser:每个用户的作业占用slot总数,用以限制用户使用的资源量。

(2) job维护的信息

priority:作业优先级,分为五个等级,从大到小依次为:VERY_HIGH,HIGH,NORMAL,LOW,VERY_LOW;

numMapTasks/ numReduceTasks :job的map/reduce task总数

runningMapTasks/ runningMapTasks:job正在运行的map/reduce task数

finishedMapTasks/finishedReduceTasks:job已完成的map/reduce task数

……

(3) task维护的信息

task开始运行时间,当前状态等

3.2 计算能力调度算法

当某个tasktracker上出现空闲slot时,调度器依次选择一个queue、(选中的queue中的)job、(选中的job中的)task,并将该slot分配给该task。下面介绍选择queue、job和task所采用的策略:

(1) 选择queue:将所有queue按照资源使用率(numSlotsOccupied/capacity)由小到大排序,依次进行处理,直到找到一个合适的job。

(2) 选择job:在当前queue中,所有作业按照作业提交时间和作业优先级进行排序(假设开启支持优先级调度功能,默认不支持,需要在配置文件中开启),调度依次考虑每个作业,选择符合两个条件的job:[1] 作业所在的用户未达到资源使用上限 [2] 该TaskTracker所在的节点剩余的内存足够该job的task使用。

(3) 选择task,同大部分调度器一样,考虑task的locality和资源使用情况。(即:调用JobInProgress中的obtainNewMapTask()/obtainNewReduceTask()方法)

综合上述,公平调度器的伪代码为:


// CapacityTaskScheduler:trackTracker出现空闲slot,为slot寻找合适的task

List<Task> assignTasks(TaskTrackerStatus taskTracker) {

  sortQueuesByResourcesUsesage(queues);

  for queue:queues {

    sortJobsByTimeAndPriority(queue);

    for job:queue.getJobs() {

      if(matchesMemoryRequirements(job,taskTracker)) {

        task = job. obtainNewTask();

        if(task != null) return task

      }

    }

  }

}

4. 计算能力调度器源代码分析

计算能力调度器位于代码包的hadoop-0.20.2\src\contrib\capacity-scheduler目录下。

4.1 源代码包组成(共5个java文件)

CapacitySchedulerConf.java:管理配置文件

CapacityTaskScheduler.java:调度器的核心代码

JobQueuesManager.java:管理作业队列

MemoryMatcher.java:用于判断job与内存容量是否匹配

JobInitializationPoller.java:作业初始化类,用户可同时启动多个线程,加快作业初始化速度。

4.2 CapacityTaskScheduler分析

只介绍调度器最核心的代码,即CapacityTaskScheduler.java文件中的代码。

(1) 几个基本的内类:

[1] TaskSchedulingInfo(TSI):用以维护某种task(MAP或者REDUCE)的调度信息,包括numRunningTasks,numSlotsOccupied等

[2] QueueSchedulingInfo(QSI):用以跟踪某个queue中的调度信息,包括capacityPercent,ulMin等

[3] TaskSchedulingMgr:调度的核心实现算法,这是一个抽象类,有两个派生类,分别为:MapSchedulingMgr和ReduceSchedulingMgr,用以实现map task和reduce task的调度策略

(2) 核心方法(按照执行顺序分析):

[1] CapacityTaskScheduler.start(): 调度器初始化,包括加载配置文件,初始化各种对象和变量等。

[2] CapacityTaskScheduler. assignTasks ():当有一个TaskTracker的HeartBeat到达JobTracker时,如果有空闲的slot,JobTracker会调用Capacity Scheduler中的assignTasks方法,该方法会为该TaskTracker需找若干个合适的task。在assignTasks方法中,会调用TaskSchedulingMgr中的方法。

前面提到TaskSchedulingMgr是一个抽象类,它实现了所有派生类必须使用的方法:

[3] TaskSchedulingMgr.assignTasks (taskTracker):对外提供的最直接的调用函数,主要作用是为taskTracker选择一个合适的task,该函数会依次扫描系统中所有的queue(queue已经被排好序,排序类为TaskSchedulingMgr.QueueComparator),对于每个queue,调用getTaskFromQueue(taskTracker, qsi)。

[4] TaskSchedulingMgr.getTaskFromQueue(taskTracker, qsi):从队列qsi中选择一个符合条件的作业,这里的“条件”包括用户的资源量上限,taskTracker空闲内存等。

5. 计算能力调度器与公平调度器对比

(1) 相同点

@ 均支持多用户多队列,即:适用于多用户共享集群的应用环境

@ 单个队列均支持优先级和FIFO调度方式

@ 均支持资源共享,即某个queue中的资源有剩余时,可共享给其他缺资源的queue

(2) 不同点

@ 核心调度策略不同。 计算能力调度器的调度策略是,先选择资源利用率低的queue,然后在queue中同时考虑FIFO和memory constraint因素;而公平调度器仅考虑公平,而公平是通过作业缺额体现的,调度器每次选择缺额最大的job(queue的资源量,job优先级等仅用于计算作业缺额)。

@ 内存约束。计算能力调度器调度job时会考虑作业的内存限制,为了满足某些特殊job的特殊内存需求,可能会为该job分配多个slot;而公平调度器对这种特殊的job无能为力,只能杀掉这种task。

6. 参考资料

(1) http://hadoop.apache.org/common/docs/r0.20.2/capacity_scheduler.html

(2) Hadoop 0.20.2 源代码

 

1. 编写目的

本文描述了hadoop中的计算能力调度器(Capacity Scheduler)的实现算法,计算能力调度器是由Yahoo贡献的,主要是解决HADOOP-3421中提出的,在调度器上完成HODHadoop On Demand)功能,克服已有HOD的性能低效的缺点。它适合于多用户共享集群的环境的调度器。本文解析的计算能力调度器属于Hadoop 0.20.2。本文组织结构如 下:1)编写目的 2)计算能力调度器介绍 3)计算能力调度器算法分析 4)计算能力调度器源代码分析 5)计算能力调度器与公平调度器比较 6)参考资料。

2. 计算能力调度器介绍

Capacity Scheduler支持以下特性:

(1) 计算能力保证。支持多个队列,某个作业可被提交到某一个队列中。每个队列会配置一定比例的计算资源,且所有提交到队列中的作业共享该队列中的资源。

(2) 灵活性。空闲资源会被分配给那些未达到资源使用上限的队列,当某个未达到资源的队列需要资源时,一旦出现空闲资源资源,便会分配给他们。

(3) 支持优先级。队列支持作业优先级调度(默认是FIFO

(4) 多重租赁。综合考虑多种约束防止单个作业、用户或者队列独占队列或者集群中的资源。

(5) 基于资源的调度。 支持资源密集型作业,允许作业使用的资源量高于默认值,进而可容纳不同资源需求的作业。不过,当前仅支持内存资源的调度。

3. 计算能力调度器算法分析

3.1 涉及到的变量

capacity中,存在三种粒度的对象,分别为:queuejobtask,它们均需要维护的一些信息:

(1) queue维护的信息

@ queueNamequeue的名称

@ ulMin:每个用户的可用的最少资源量(所有用户均相同),需用户在配置文件中指定

@ capacityPercent:计算资源比例,需用户在配置文件中指定

@ numJobsByUser:每个用户的作业量,用以跟踪每个用户提交的作业量,并进行数量的上限限制。

该队列中map reduce task的属性:

@ capacity:实际的计算资源量,这个随着tasktrackerslot数目变化(用户可能在添加或减少机器节点)而动态变化,大小为:capacityPercent*mapClusterCapacity/100

@ numRunningTasks:正在runningtask数目

@ numSlotsOccupied:正在runningtask占用的slot总数,注意,在Capacity Scheduler中,running taskslot不一定是一一对应的,每个task可获取多个slot,这主要是因为该调度支持内存资源调度,某个task可能需要多个slot包含的内存量。

@ numSlotsOccupiedByUser:每个用户的作业占用slot总数,用以限制用户使用的资源量。

(2) job维护的信息

priority:作业优先级,分为五个等级,从大到小依次为:VERY_HIGHHIGHNORMALLOWVERY_LOW;

numMapTasks/ numReduceTasks jobmap/reduce task总数

runningMapTasks/ runningMapTasksjob正在运行的map/reduce task

finishedMapTasks/finishedReduceTasksjob已完成的map/reduce task

……

(3) task维护的信息

task开始运行时间,当前状态等

3.2 计算能力调度算法

当某个tasktracker上出现空闲slot时,调度器依次选择一个queue、(选中的queue中的)job、(选中的job中的)task,并将该slot分配给该task。下面介绍选择queuejobtask所采用的策略:

(1) 选择queue:将所有queue按照资源使用率(numSlotsOccupied/capacity)由小到大排序,依次进行处理,直到找到一个合适的job

(2) 选择job:在当前queue中,所有作业按照作业提交时间和作业优先级进行排序(假设开启支持优先级调度功能,默认不支持,需要在配置文件中开启),调度依次考虑每个作业,选择符合两个条件的job[1] 作业所在的用户未达到资源使用上限 [2] TaskTracker所在的节点剩余的内存足够该jobtask使用。

(3) 选择task,同大部分调度器一样,考虑tasklocality和资源使用情况。(即:调用JobInProgress中的obtainNewMapTask()/obtainNewReduceTask()方法)

综合上述,公平调度器的伪代码为:

// CapacityTaskScheduler:trackTracker出现空闲slot,为slot寻找合适的task

List<Task> assignTasks(TaskTrackerStatus taskTracker) {

sortQueuesByResourcesUsesage(queues);

for queue:queues {

sortJobsByTimeAndPriority(queue);

for job:queue.getJobs() {

if(matchesMemoryRequirements(jobtaskTracker)) {

task = job. obtainNewTask();

if(task != null) return task

}

}

}

}

4. 计算能力调度器源代码分析

计算能力调度器位于代码包的hadoop-0.20.2\src\contrib\capacity-scheduler目录下。

4.1 源代码包组成(共5java文件)

CapacitySchedulerConf.java:管理配置文件

CapacityTaskScheduler.java:调度器的核心代码

JobQueuesManager.java:管理作业队列

MemoryMatcher.java:用于判断job与内存容量是否匹配

JobInitializationPoller.java:作业初始化类,用户可同时启动多个线程,加快作业初始化速度。

4.2 CapacityTaskScheduler分析

只介绍调度器最核心的代码,即CapacityTaskScheduler.java文件中的代码。

(1) 几个基本的内类:

[1] TaskSchedulingInfoTSI):用以维护某种task(MAP或者REDUCE)的调度信息,包括numRunningTasksnumSlotsOccupied

[2] QueueSchedulingInfoQSI):用以跟踪某个queue中的调度信息,包括capacityPercentulMin

[3] TaskSchedulingMgr:调度的核心实现算法,这是一个抽象类,有两个派生类,分别为:MapSchedulingMgrReduceSchedulingMgr,用以实现map taskreduce task的调度策略

(2) 核心方法(按照执行顺序分析):

[1] CapacityTaskScheduler.start() 调度器初始化,包括加载配置文件,初始化各种对象和变量等。

[2] CapacityTaskScheduler. assignTasks ():当有一个TaskTrackerHeartBeat到达JobTracker时,如果有空闲的slotJobTracker会调用Capacity Scheduler中的assignTasks方法,该方法会为该TaskTracker需找若干个合适的task。在assignTasks方法中,会调用