Java是什么?
Java历史
Java语言特点
C++ VS Java比较
Java工厂设计模式
Java抽象工厂模式
Java单例模式
Java建造者(Builder)模式
Java原型模式
Java适配器模式
Java桥接模式
Java获取网络文件大小
Java套接字到单一的客户端
Java连接套接字
Java URL部分
Java URL连接日期
Java下载网页
Java主机指定IP地址
Java确定本地IP地址
Java检查端口占用
Java查找代理服务器设置
Java创建Socket
Java线程实例
Java检查线程活着
Java如何检查一个线程停止或没有?
Java解决死锁实例
Java如何获取正在运行的线程的优先级?
Java如何监视线程的状态?
Java获取线程名称
Java线程生产者消费者问题
Java如何设置线程的优先级?
Java如何停止线程一会儿?
Java如何暂停线程?
Java获取线程ID
Java如何检查线程的优先级?
Java显示所有正在运行的线程?
Java显示线程状态
Java中断一个线程
Java Applet实例
Java创建Applet
Java使用Applet创建横幅
Java使用Applet显示时钟?
Java在一个Applet创建不同形状
Java如何使用Applet填充形状的颜色?
Java使用Applet跳转到一个链接
Java在Applet创建事件监听器
Java使用Applet显示图像
Java使用Applet在新窗口中打开链接
Java使用Applet播放声音?
Java使用Applet读取文件
Java使用Applet写入文件
Java中Swing应用程序applet
Java简单的图形用户界面-GUI
Java以不同的字体显示文本
Java使用GUI画一条线
Java创建框架-frame
Java使用GUI显示多边形
Java在矩形中显示文本
Java GUI显示不同形状
Java如何绘制GUI实心矩形?
Java创建GUI透明光标
Java检查GUI平滑处理状态
Java在框架中显示颜色
Java GUI显示饼图
Java使用图形用户界面绘制文本
Java编辑表-table
Java 使用prepared语句
Java使用保存点和回滚
Java同时执行数据库多个SQL命令
Java使用行方法
Java使用列方法
Java正则表达式实例
Java将字符串分割
Java搜索重复单词
Java查找出现的单词
Java最后一个词的索引
Java模式匹配
Java删除空格
Java匹配电话号码
Java计数组词
Java搜索词组
Java拆分正则表达式
Java替换第一个出现字符串
Java检查日期格式
Java验证电子邮件地址格式
Java替换所有匹配字符串
Java使每个单词的第一个字母大写
从XML创建SqlSessionFactory实例
不使用XML来创建SqlSessionFactory
从SqlSessionFactory获取SqlSession
映射SQL语句
作用域和生命周期
Mapper XML配置
properties元素
Settings元素
typeAliases 元素
typeHandlers元素
理解CacheLine与写出更好的JAVA
Java核心技术点之动态代理
更好的使用JAVA线程池
理解Java中字符流与字节流的区别
深入分析Java方法反射的实现原理
关于Java面试,你应该准备这些知识点
Java内存模型
2017年你不能错过的Java类库
Leakcanary Square的一款Android/Java内存泄漏检测工具
Java Synchronised机制
Java核心技术点之注解
JVM(8):JVM知识点总览-高级Java工程师面试必备
JVM(3):Java GC算法 垃圾收集器
JVM(1):Java 类的加载机制
解决ActiveMQ中,Java与C++交互中文乱码问题
关于Java Collections的几个常见问题
Java I/O 总结
JVM源码分析之Java对象的创建过程
JVM源码分析之Java类的加载过程
Java GC的那些事(下)
Java GC的那些事(上)
java对象头的HotSpot实现分析
面试的角度诠释Java工程师(一)
面试的角度诠释Java工程师(二)
框架开发之Java注解的妙用
谈谈Java反射机制
Java并发:volatile内存可见性和指令重排
死磕Java并发:Java内存模型之happens-before
死磕Java并发:深入分析volatile的实现原理
死磕Java并发:深入分析synchronized的实现原理
Java 10 可能对 Lambda 表达式进行升级
G1垃圾回收器中的字符串去重(Java 8 Update 20)
Java RESTful框架的性能比较
理解RxJava的线程模型
继续了解Java的纤程库 – Quasar
Java中的纤程库 – Quasar
Java豆瓣电影爬虫——抓取电影详情和电影短评数据
Java集合框架源码剖析:LinkedHashSet 和 LinkedHashMap
Java Lambda表达式初探
Java中的陷阱题
Java 9的这一基本功能,你可能从未听过
关于Java并发编程的总结和思考
几种简单的负载均衡算法及其Java代码实现
JAVA虚拟机关闭钩子(Shutdown Hook)
Java 脚本化编程指南
Java Scripting API 使用示例
Java 8 的 Nashorn 脚本引擎教程
如何开始使用 Java 机器学习
CognitiveJ —— Java 的图像分析库
Java 性能优化的五大技巧
Java 解惑:Comparable 和 Comparator 的区别
Google Java编程风格指南
java NIO详解
Java 异常处理的误区和经验总结
Java语法糖(4):内部类
Java语法糖(3):泛型
Java语法糖(2):自动装箱和自动拆箱
Java消息队列任务的平滑关闭
Java语法糖(1):可变长度参数以及foreach循环原理
2016最流行的Java EE服务器
自己写一个java.lang.reflect.Proxy代理的实现
java 如何在pdf中生成表格
如何防止单例模式被JAVA反射攻击
java虚拟机 jvm 局部变量表实战
聊聊并发-Java中的Copy-On-Write容器
java.lang.Instrument 代理Agent使用
Java开发者需要了解的移动开发编程语言
13个不容错过的Java项目
2016年7款最佳 Java 框架推荐
Java 开发者值得关注的 11 个技术博客
Redmonk发布Java框架流行度调研结果
Java 8开发的4大顶级技巧
GitHub漫游指南:10个值得你关注的Java项目
除了Guava,Java开发者还值得了解的5个谷歌类库
Java中创建对象的5种不同方法
Java性能优化全攻略
奇怪的Java题:为什么1000 == 1000返回为False,而100 == 100会返回为True?
11个最值得Java开发者收藏的网站
Java的常见误区与细节
对Java意义重大的7个性能指标
Java调优经验谈
关于Java并发编程的总结和思考
HDFS Federation设计动机与基本原理
《Effective STL》学习笔记(第三部分)
《Effective STL》学习笔记(第二部分)
《Effective STL》学习笔记(第一部分)
数据结构之位图
Thrift使用指南
Cassandra概要介绍
Cassandra部署与安装
Cassandra客户端
Cassandra数据模型
Cassandra中的各种策略
数据结构之树状数组
数据结构之伸展树
数据结构之后缀数组
数据结构之堆
浅析MRv1与MRv2的API兼容性
Apache Tez最新进展
运行在YARN上的计算框架
从传统操作系统角度理解Hadoop YARN

Java GC的那些事(上)

于2017-05-10由小牛君创建

分享到:


前言

与C语言不同,Java内存(堆内存)的分配与回收由JVM垃圾收集器自动完成,这个特性深受大家欢迎,能够帮助程序员更好的编写代码,本文以HotSpot虚拟机为例,说一说Java GC的那些事。

Java堆内存

在 JVM内存的那些事 一文中,我们已经知道Java堆是被所有线程共享的一块内存区域,所有对象实例和数组都在堆上进行内存分配。为了进行高效的垃圾回收,虚拟机把堆内存划分成新生代(Young Generation)、老年代(Old Generation)和永久代(Permanent Generation)3个区域。

新生代

新生代由 Eden 与 Survivor Space(S0,S1)构成,大小通过-Xmn参数指定,Eden 与 Survivor Space 的内存大小比例默认为8:1,可以通过-XX:SurvivorRatio 参数指定,比如新生代为10M 时,Eden分配8M,S0和S1各分配1M。

Eden:希腊语,意思为伊甸园,在圣经中,伊甸园含有乐园的意思,根据《旧约·创世纪》记载,上帝耶和华照自己的形像造了第一个男人亚当,再用亚当的一个肋骨创造了一个女人夏娃,并安置他们住在了伊甸园。

大多数情况下,对象在Eden中分配,当Eden没有足够空间时,会触发一次Minor GC,虚拟机提供了-XX:+PrintGCDetails参数,告诉虚拟机在发生垃圾回收时打印内存回收日志。

Survivor:意思为幸存者,是新生代和老年代的缓冲区域。
当新生代发生GC(Minor GC)时,会将存活的对象移动到S0内存区域,并清空Eden区域,当再次发生Minor GC时,将Eden和S0中存活的对象移动到S1内存区域。

存活对象会反复在S0和S1之间移动,当对象从Eden移动到Survivor或者在Survivor之间移动时,对象的GC年龄自动累加,当GC年龄超过默认阈值15时,会将该对象移动到老年代,可以通过参数-XX:MaxTenuringThreshold 对GC年龄的阈值进行设置。

老年代

老年代的空间大小即-Xmx 与-Xmn 两个参数之差,用于存放经过几次Minor GC之后依旧存活的对象。当老年代的空间不足时,会触发Major GC/Full GC,速度一般比Minor GC慢10倍以上。

永久代

在JDK8之前的HotSpot实现中,类的元数据如方法数据、方法信息(字节码,栈和变量大小)、运行时常量池、已确定的符号引用和虚方法表等被保存在永久代中,32位默认永久代的大小为64M,64位默认为85M,可以通过参数-XX:MaxPermSize进行设置,一旦类的元数据超过了永久代大小,就会抛出OOM异常。

虚拟机团队在JDK8的HotSpot中,把永久代从Java堆中移除了,并把类的元数据直接保存在本地内存区域(堆外内存),称之为元空间。

这样做有什么好处?
有经验的同学会发现,对永久代的调优过程非常困难,永久代的大小很难确定,其中涉及到太多因素,如类的总数、常量池大小和方法数量等,而且永久代的数据可能会随着每一次Full GC而发生移动。

而在JDK8中,类的元数据保存在本地内存中,元空间的最大可分配空间就是系统可用内存空间,可以避免永久代的内存溢出问题,不过需要监控内存的消耗情况,一旦发生内存泄漏,会占用大量的本地内存。

ps:JDK7之前的HotSpot,字符串常量池的字符串被存储在永久代中,因此可能导致一系列的性能问题和内存溢出错误。在JDK8中,字符串常量池中只保存字符串的引用。

如何判断对象是否存活

GC动作发生之前,需要确定堆内存中哪些对象是存活的,一般有两种方法:引用计数法和可达性分析法。

1、引用计数法
在对象上添加一个引用计数器,每当有一个对象引用它时,计数器加1,当使用完该对象时,计数器减1,计数器值为0的对象表示不可能再被使用。

引用计数法实现简单,判定高效,但不能解决对象之间相互引用的问题。

public class GCtest {
    private Object instance = null;
    private static final int _10M = 10 * 1 << 20;
    // 一个对象占10M,方便在GC日志中看出是否被回收
    private byte[] bigSize = new byte[_10M];

    public static void main(String[] args) {
        GCtest objA = new GCtest();
        GCtest objB = new GCtest();

        objA.instance = objB;
        objB.instance = objA;

        objA = null;
        objB = null;

        System.gc();
    }
}

通过添加-XX:+PrintGC参数,运行结果:

[GC (System.gc()) [PSYoungGen: 26982K->1194K(75776K)] 26982K->1202K(249344K), 0.0010103 secs]

从GC日志中可以看出objA和objB虽然相互引用,但是它们所占的内存还是被垃圾收集器回收了。

2、可达性分析法
通过一系列称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,搜索路径称为 “引用链”,以下对象可作为GC Roots:

  • 本地变量表中引用的对象
  • 方法区中静态变量引用的对象
  • 方法区中常量引用的对象
  • Native方法引用的对象

当一个对象到 GC Roots 没有任何引用链时,意味着该对象可以被回收。

在可达性分析法中,判定一个对象objA是否可回收,至少要经历两次标记过程:
1、如果对象objA到 GC Roots没有引用链,则进行第一次标记。
2、如果对象objA重写了finalize()方法,且还未执行过,那么objA会被插入到F-Queue队列中,由一个虚拟机自动创建的、低优先级的Finalizer线程触发其finalize()方法。finalize()方法是对象逃脱死亡的最后机会,GC会对队列中的对象进行第二次标记,如果objA在finalize()方法中与引用链上的任何一个对象建立联系,那么在第二次标记时,objA会被移出“即将回收”集合。

看看具体实现

public class FinalizerTest {
    public static FinalizerTest object;
    public void isAlive() {
        System.out.println("I'm alive");
    }

    @Override
    protected void finalize() throws Throwable {
        super.finalize();
        System.out.println("method finalize is running");
        object = this;
    }

    public static void main(String[] args) throws Exception {
        object = new FinalizerTest();

        // 第一次执行,finalize方法会自救
        object = null;
        System.gc();

        Thread.sleep(500);
        if (object != null) {
            object.isAlive();
        } else {
            System.out.println("I'm dead");
        }

        // 第二次执行,finalize方法已经执行过
        object = null;
        System.gc();

        Thread.sleep(500);
        if (object != null) {
            object.isAlive();
        } else {
            System.out.println("I'm dead");
        }
    }
}

执行结果:

method finalize is running
I'm alive
I'm dead

从执行结果可以看出:
第一次发生GC时,finalize方法的确执行了,并且在被回收之前成功逃脱;
第二次发生GC时,由于finalize方法只会被JVM调用一次,object被回收。

当然了,在实际项目中应该尽量避免使用finalize方法。