大数据培训新三板挂牌机构 股票代码:837906 | EN CN
【小牛原创】Spark SQL 从入门到实战 -- spark sql 1.6版本相关api
【小牛原创】Spark SQL 从入门到实战 -- 概述
Spark Streaming:大规模流式数据处理
spark RDD 相关需求
spark RDD 高级应用
Spark手册 - load&save
Spark手册 - debug
Spark手册 - cache&checkpoint
Spark手册 - RDD Action API
Spark手册 - Partitioner源码
Spark手册 - RDD Transformation API
Spark手册 - RDD的依赖关系
Spark手册 - RDD入门
Spark手册 - 远程debug
Spark手册 - 在IDEA中编写WordCount程序(3)
Spark手册 - 在IDEA中编写WordCount程序(2)
Spark手册 - 在IDEA中编写WordCount程序(1)
Spark手册 - 执行Spark程序
Spark手册 - 集群安装
20页PPT|视频类网站大数据生态 Spark在爱奇艺的应用实践
Spark机器学习入门实例——大数据集(30+g)二分类
Spark官方文档中文翻译:Spark SQL 之 Data Sources
使用Spark MLlib来训练并服务于自然语言处理模型
Spark知识体系完整解读
案例 :Spark应用案例现场分享(IBM Datapalooza)
最全的Spark基础知识解答
Spark在GrowingIO数据无埋点全量采集场景下的实践
Apache Spark探秘:三种分布式部署方式比较
Apache Spark探秘:多进程模型还是多线程模型?
Apache Spark探秘:实现Map-side Join和Reduce-side Join
Apache Spark探秘:利用Intellij IDEA构建开发环境
spark on yarn的技术挑战
Apache Spark学习:将Spark部署到Hadoop 2.2.0上
Hadoop与Spark常用配置参数总结
基于Spark Mllib,SparkSQL的电影推荐系统
spark作业调优秘籍,解数据倾斜之痛
Spark入门必学:预测泰坦尼克号上的生还情况
小牛学堂浅谈基于Spark大数据平台日志审计系统的设计与实现
【Hadoop Summit Tokyo 2016】使用基于Lambda架构的Spark的近实时的网络异常检测和流量分析
Spark编程环境搭建经验分享
Spark技术在京东智能供应链预测的应用
spark中textFile、groupByKey、collect、flatMap、map结合小案例
Spark中DataFrame的schema讲解
深度剖析Spark分布式执行原理
【Spark Summit East 2017】从容器化Spark负载中获取的经验
内存分析技术哪家强?Spark占几何
Spark系列之一:Spark,一种快速数据分析替代方案
6种最常见的Hadoop和Spark项目
Hadoop vs Spark
Hadoop与Spark常用配置参数总结
Spark RPC通信层设计原理分析
Spark Standalone架构设计要点分析
Spark UnifiedMemoryManager内存管理模型分析
网易的Spark技术分享

Spark中DataFrame的schema讲解

于2017-03-16由小牛君创建

分享到:


1.Schema是什么

         DataFrame中提供了详细的数据结构信息,从而使得SparkSQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么,

DataFrame中的数据结构信息,即为schema。

2.输出schema

      还是用官网中的people.json的文件,输出schema,看看schema到底长什么样子。people.json文件的show()在上一篇文章中已经写到,

为了大家方便,我再把people.json长啥样贴出来,如图:

输出schema就一行代码:

[plain] view plain copy
 
  1. df.printSchema()  

 

3.完整代码及结果

完整代码如下:

 

[plain] view plain copy
 
  1. object SparkSQLExample {  
  2.   def main(args: Array[String]) {  
  3.   
  4.     val sparkConf = new SparkConf().setMaster("local").setAppName("spark SQL basic example")  
  5.   
  6.     val sc = new SparkContext(sparkConf)  
  7.   
  8.     val sqlContext = new SQLContext(sc)  
  9.   
  10.     val df = new SQLContext(sc).read.json("E:\\spark-2.1.0\\spark-2.1.0\\examples\\src\\main\\resources\\people.json")  
  11.   
  12.     df.show()  
  13.   
  14.     df.printSchema()  
  15.   
  16.   }  
  17. }  

 

看截屏不清楚,为了让大家看的清楚,只截结果: