【小牛原创】Spark SQL 从入门到实战 -- spark sql 1.6版本相关api
【小牛原创】Spark SQL 从入门到实战 -- 概述
Spark Streaming:大规模流式数据处理
spark RDD 相关需求
spark RDD 高级应用
Spark手册 - load&save
Spark手册 - debug
Spark手册 - cache&checkpoint
Spark手册 - RDD Action API
Spark手册 - Partitioner源码
Spark手册 - RDD Transformation API
Spark手册 - RDD的依赖关系
Spark手册 - RDD入门
Spark手册 - 远程debug
Spark手册 - 在IDEA中编写WordCount程序(3)
Spark手册 - 在IDEA中编写WordCount程序(2)
Spark手册 - 在IDEA中编写WordCount程序(1)
Spark手册 - 执行Spark程序
Spark手册 - 集群安装
20页PPT|视频类网站大数据生态 Spark在爱奇艺的应用实践
Spark机器学习入门实例——大数据集(30+g)二分类
Spark官方文档中文翻译:Spark SQL 之 Data Sources
使用Spark MLlib来训练并服务于自然语言处理模型
Spark知识体系完整解读
案例 :Spark应用案例现场分享(IBM Datapalooza)
最全的Spark基础知识解答
Spark在GrowingIO数据无埋点全量采集场景下的实践
Apache Spark探秘:三种分布式部署方式比较
Apache Spark探秘:多进程模型还是多线程模型?
Apache Spark探秘:实现Map-side Join和Reduce-side Join
Apache Spark探秘:利用Intellij IDEA构建开发环境
spark on yarn的技术挑战
Apache Spark学习:将Spark部署到Hadoop 2.2.0上
Hadoop与Spark常用配置参数总结
基于Spark Mllib,SparkSQL的电影推荐系统
spark作业调优秘籍,解数据倾斜之痛
Spark入门必学:预测泰坦尼克号上的生还情况
小牛学堂浅谈基于Spark大数据平台日志审计系统的设计与实现
【Hadoop Summit Tokyo 2016】使用基于Lambda架构的Spark的近实时的网络异常检测和流量分析
Spark编程环境搭建经验分享
Spark技术在京东智能供应链预测的应用
spark中textFile、groupByKey、collect、flatMap、map结合小案例
Spark中DataFrame的schema讲解
深度剖析Spark分布式执行原理
【Spark Summit East 2017】从容器化Spark负载中获取的经验
内存分析技术哪家强?Spark占几何
Spark系列之一:Spark,一种快速数据分析替代方案
6种最常见的Hadoop和Spark项目
Hadoop vs Spark
Hadoop与Spark常用配置参数总结
Spark RPC通信层设计原理分析
Spark Standalone架构设计要点分析
Spark UnifiedMemoryManager内存管理模型分析
网易的Spark技术分享

Hadoop与Spark常用配置参数总结

于2017-03-15由小牛君创建

分享到:


MapReduce重要配置参数

1.  资源相关参数

(1) mapreduce.map.memory.mb: 一个Map Task可使用的资源上限(单位:MB),默认为1024。如果Map Task实际使用的资源量超过该值,则会被强制杀死。

(2) mapreduce.reduce.memory.mb: 一个Reduce Task可使用的资源上限(单位:MB),默认为1024。如果Reduce Task实际使用的资源量超过该值,则会被强制杀死。

(3) mapreduce.map.java.opts: Map Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g.

“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc” (@taskid@会被Hadoop框架自动换为相应的taskid), 默认值: “”

(4) mapreduce.reduce.java.opts: Reduce Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g.

“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc”, 默认值: “”

(5) mapreduce.map.cpu.vcores: 每个Map task可使用的最多cpu core数目, 默认值: 1

(6) mapreduce.map.cpu.vcores: 每个Reduce task可使用的最多cpu core数目, 默认值: 1

2.  容错相关参数

(1) mapreduce.map.maxattempts: 每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

(2) mapreduce.reduce.maxattempts: 每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

(3) mapreduce.map.failures.maxpercent: 当失败的Map Task失败比例超过该值为,整个作业则失败,默认值为0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于0的值,比如5,表示如果有低于5%的Map Task失败(如果一个Map Task重试次数超过mapreduce.map.maxattempts,则认为这个Map Task失败,其对应的输入数据将不会产生任何结果),整个作业扔认为成功。

(4) mapreduce.reduce.failures.maxpercent: 当失败的Reduce Task失败比例超过该值为,整个作业则失败,默认值为0.

(5) mapreduce.task.timeout: Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该task处于block状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是300000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。

3.  本地运行mapreduce 作业

设置以下几个参数:

mapreduce.framework.name=local

mapreduce.jobtracker.address=local

fs.defaultFS=local

4.  效率和稳定性相关参数

(1) mapreduce.map.speculative: 是否为Map Task打开推测执行机制,默认为false

(2) mapreduce.reduce.speculative: 是否为Reduce Task打开推测执行机制,默认为false

(3) mapreduce.job.user.classpath.first & mapreduce.task.classpath.user.precedence:当同一个class同时出现在用户jar包和hadoop jar中时,优先使用哪个jar包中的class,默认为false,表示优先使用hadoop jar中的class。
(4) mapreduce.input.fileinputformat.split.minsize: 每个Map Task处理的数据量(仅针对基于文件的Inputformat有效,比如TextInputFormat,SequenceFileInputFormat),默认为一个block大小,即 134217728。

HBase 相关配置参数

(1) hbase.rpc.timeout:rpc的超时时间,默认60s,不建议修改,避免影响正常的业务,在线上环境刚开始配置的是3秒,运行半天后发现了大量的timeout error,原因是有一个region出现了如下问题阻塞了写操作:“Blocking updates … memstore size 434.3m is >= than blocking 256.0m size”可见不能太低。
(2) ipc.socket.timeout:socket建立链接的超时时间,应该小于或者等于rpc的超时时间,默认为20s
(3) hbase.client.retries.number:重试次数,默认为14,可配置为3
(4) hbase.client.pause:重试的休眠时间,默认为1s,可减少,比如100ms
(5) hbase.regionserver.lease.period:scan查询时每次与server交互的超时时间,默认为60s,可不调整。

Spark 相关配置参数

1.  效率及稳定性相关参数

建议打开map(注意,在spark引擎中,也只有map和reduce两种task,spark叫ShuffleMapTask和ResultTask)中间结果合并及推测执行功能:

spark.shuffle.consolidateFiles=true

spark.speculation=trure

2.  容错相关参数

建议将这些值调大,比如:

spark.task.maxFailures=8

spark.akka.timeout=300

spark.network.timeout=300

spark.yarn.max.executor.failures=100