大数据培训新三板挂牌机构 股票代码:837906 | EN CN
阿里巴巴菜鸟级数据产品经理半年回顾总结篇
干货教程:如何绘制业务流程图(二)
干货教程:如何绘制业务流程图(一)
技术贴:如何在数据库中秘密地查询隐私数据
攻略教程:信息图(infographic)是怎么做出来的?
分析师一定要看!用数据讲故事的五个步骤
技术篇:怎样玩转千万级别的数据?
北漂书生:大数据时代SEO数据如何搜集和分析
干货,从十大问题重新认识并读懂互联网
相似图片搜索、算法、识别的原理解析(下)
相似图片搜索、算法、识别的原理解析(上)
制作信息图时请遵循这10条原则
提高表格可读性的一些技巧,适用于Excel、PPT等数据报表
实用教程:如何让Excel图表更具“商务气质”?
一张数据信息图是这样制作完成的
菜鸟读财报,如何从上市公司财报中挖情报?
北大数据分析老鸟写给学弟们一封信
如何一步一步制作出高品质数据信息图?
总结:海量数据分析处理的十个方法
【实战经验】数据分析师如何了解老板真正想法?
零售业数据分析那些事儿
数据分析时l常用电子表格公式【大全】
用数据来告诉你 上市公司财报的秘密
这12个数据能 帮你搞定淘宝店铺
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(四)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(三)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(二)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(一)
淘宝网店从激活到挽留,4步走玩转数据营销
文案怎样写才有意思、不空洞、打动人?
入门级扫盲贴:数据分析的步骤有哪些?
关系即数据,论社交媒体的关系转换
数据的力量,苹果教你用数据鄙视竞争对手
谁说文科生不能做数据分析?数据分析入行→技能提升→优势
产品运营数据分析——SPSS数据分组案例
如何追踪iPhone和iPad等移动设备的用户行为数据?
阿里巴巴中国站:用户满意度指标权重计算方法
广告中的AdNetwork、AdExchange、DSP、SSP、RTB和DMP是什么?
信息图制作教程:关于数值的表现
为什么大数据会如此轰动?(值得深度的文章)
多图技术贴:深入浅出解析大数据平台架构
面板数据分析中标准误的估计修正——根据Peterson (2009)的归纳
财务官、投资人、CIO看过来:给企业数据定价
推荐系统中常用算法 以及优点缺点对比
探索Weotta搜索引擎背后的大数据技术
如何识别虚假数据?
为什么我们像驯化小狗那样驯化算法
程序员必须知道的10大基础实用算法及其讲解
电子商务:最影响转化率的九大要素
如何迅速成为一名数据分析师?
想从事大数据、海量数据处理相关的工作,如何自学打基础?
如何用亚马逊弹性MapReduce分析大数据?
译文:机器学习算法基础知识
给hadoop新手的一封信:Hadoop入门自学及对就业的帮助
从入门到精通,我是这样学习算法的
小商家,从老客户身上获取的数据才更有意义
13页PPT讲述:大数据下网站数据分析应用
40页PPT详解:京东大数据基础构架与创新应用
67页PPT解密搜索引擎背后的大技术:知识图谱,大数据语义链接的基石
营销洞察力——10个营销度量指标
技术篇:前端数据之美如何展示?
董飞:美国大数据工程师面试攻略【PPT】
easel:如何制作好的信息图——来自专家的顶级技巧
大数据实操:以3D打印机为例,如何知道卖点有没有市场需求?
大数据建模 需要了解的九大形式
用户画像数据建模方法
从规划开始,公司or企业如何入手和实施大数据?
干货:商品信息数据分析和展现系统的设计与开发
高手教你用Excel制作百度迁徙数据地图
50篇干货:淘宝店/电子商务如何玩转数据分析?
精华索引:大数据实际应用案例50篇
验证最小化可行产品 (MVP) 的 15 种方法
干货:数据分析师的完整知识结构
大数据技术Hadoop面试题,看看你能答对多少?答案在后面
用SPSS做数据分析?先弄懂SPSS的基础知识吧
怎样做出优秀的扁平化设计风格PPT? 扁平化PPT设计手册#3
解答│做大数据过程中遇到的13个问题
40页PPT│社交网络发展的新动力:大数据与众包
以Amazon、豆瓣网为例,探索推荐引擎内部的秘密#1
怎样做出优秀的扁平化设计风格PPT?#2
怎样做出优秀的扁平化设计风格PPT?#1
36页PPT│大数据分析关键技术在腾讯的应用服务创新
如何丰满地做SWOT分析?
【35页PPT】TalkingData研发副总阎志涛:移动互联网大数据处理系统架构
27页PPT|以珍爱网为例,如何构建有业务价值的数据分析系统?
国外数据新闻资源分享
21页PPT重磅发布:Mariana——腾讯深度学习平台的进展与应用
从0到100——知乎架构变迁史
PPT解读:百度大数据质量保障方案探索
45页PPT|大数据环境下实现一个O2O通用推荐引擎的实践
从数据看豆瓣兴衰
深度学习系列:解密最接近人脑的智能学习机器——深度学习及并行化实现(四)
重磅推荐:129页PPT讲述移动时代创业黄金法则 via:腾讯企鹅智酷
重磅推荐:大数据工程师飞林沙的年终总结&算法数据的思考
OpenKN——网络大数据时代的知识计算引擎
大数据下城市计算的典型应用
技术贴:大数据告诉你,如何给微信公众号文章取标题?
你的QQ暴露了你的心——QQ大数据及其应用介绍PPT
如何从企业报表看企业的生存能力?
实用的大数据技巧合集
技术帝揭秘:充电宝是如何盗取你的个人隐私的?
重磅!50页PPT揭秘腾讯大数据平台与推荐应用架构
原创教程:饼图之复合饼图与双层饼图(1)
PPT:大数据时代的设计特点——不了解这个你做不了今天的设计
教程贴:如何用方程式写春联?
原创教程:如何用Excel制作简易动态对比图
深度译文:机器学习那些事
教程帖:数学之美——手把手教你用Excel画心(动态图)
董老师走进斯坦福,聊聊硅谷创业公司和大数据的事儿(附课件PPT下载)
【限时】年度钜献,108个大数据文档PDF开放下载
董飞专栏:大数据入门——大数据相关技术、Hadoop生态、LinkedIn内部实战
亿级用户下的新浪微博平台架构
一张图了解磁盘里的数据结构
浅析数据化设计思维在阿里系产品的应用
美团推荐算法实践
一个P2P创业公司有哪些部门,都是做什么的?
一个P2P平台的详细运营框架是怎样的?
机器学习中的算法——决策树模型组合之随机森林与GBDT
神经网络简史
58页PPT看懂互联网趋势,大数据/物联网/云计算/4G都有了
广点通背后的大数据技术秘密——大规模主题模型建模及其在腾讯业务中的应用(附PPT)
微信红包之CBA实践PPT——移动互联网海量访问系统设计
一文读懂机器学习,大数据/自然语言处理/算法全有了……
搜狐新闻客户端的背后大数据技术原理——推荐系统(PPT)
原创教程:用Excel做动态双层饼图
半小时读懂PMP私有广告交易市场
怎样分析样本调研数据(译)
PPT:支付宝背后的大数据技术——DataLab、Higo的实践及应用
大数据技术人员的工具包——开源大数据处理工具list(限时下载)
计算机视觉:随机森林算法在人体识别中的应用
24页PPT:机器学习——支持向量机SVM简介(附下载)
互联网高手教你如何搜集你想要的信息
深度:对地观测大数据处理、挑战与思考
原创教程:用Excel做饼图之复合饼图与双层饼图(2)
移动大数据时代: 无线网络的挑战与机遇(附pdf下载)
Excel使用技巧——25招必学秘技
【年度热门】加上这些 Excel 技能点,秒杀众人(多图)
原创教程:用Excel做纵向折线图
知识图谱——机器大脑中的知识库
何明科专栏:用数据化的方式解析投资条款
DT时代,如何用大数据分析创造商业价值(23页PPT)
MIT牛人梳理脉络详解宏伟现代数据体系
你的老婆是怎么算出来的?揭秘佳缘用户推荐系统
飞林沙:商品推荐算法&推荐解释
PPT:如何成为真正的数据架构师?(附下载)
开源大数据查询分析引擎现状
董飞专栏:打造数据产品必知秘籍
译文:如何做强大又漂亮的信息图
如何使用Amazon Machine Learning构建机器学习预测模型
如何运用数据协助货架管理(内附26张PPT)
SVM算法
主流大数据系统在后台的层次角色及数据流向
PPT:阿里全息大数据构建与应用
人脸识别技术大总结——Face Detection & Alignment
教程:用Excel制作成对条形图
易观智库:大数据下的用户分析及用户画像(18页PPT附下载)
技术向:如何设计企业级大数据分析平台?
电商数据分析基础指标体系
IBM SPSS Modeler 决策树之银行行销预测应用分析
拓扑数据分析与机器学习的相互促进
基于 R 语言和 SPSS 的决策树算法介绍及应用
用php做爬虫 百万级别知乎用户数据爬取与分析
另类新浪微博基本数据采集方法
以10万+阅读的文章为例 教你做微信公众号的运营数据分析
破解数据三大难题:变现?交易?隐私?
微店的大数据平台建设实践与探讨
阿里巴巴PPT:大数据基础建议及产品应用之道
基于社会媒体的预测技术
人工智能简史
技巧:演讲中怎样用数据说话
马云和小贝选谁做老公?写给非数据人的数据世界入门指南
掘金大数据产业链:上游资源+中游技术+下游应用
原创教程:手把手教你用Excel做多层折线图
销售分析:如何从数据指标发现背后的故事
如何一步步从数据产品菜鸟走到骨干数据产品
也来谈谈微博的用户画像
行走在网格之间:微博用户关系模型
如何拍出和明星一样美爆的自拍照?斯坦福大学用卷积神经网络建模告诉你
运营商如何玩转大数据? 浙江移动云计算和大数据实践(PPT附下载)
大数据分析的集中化之路 建设银行大数据应用实践PPT
腾讯防刷负责人:基于用户画像大数据的电商防刷架构
创业提案的逻辑
友盟分享 | 移动大数据平台架构思想以及实践经验
寻路推荐 豆瓣推荐系统实践之路
“小数据”的统计学
重磅!8大策略让你对抗机器学习数据集里的不均衡数据
小团队撬动大数据——当当推荐团队的机器学习实践
微博推荐架构的演进
科普文 手把手教你微信公众号数据分析
信息图制作的六个注意点
【权利的游戏】剧透新玩法:情理之中?意料之外
推荐系统(Recommender System)的技术基础
核心算法 谷歌如何从网络的大海里捞到针
Quora数据科学家和机器学习工程师是如何合作的
阿里巴巴PPT:大数据下的数据安全
数据建模那点事儿
全民拥抱Docker云–Lhotse系统经验分享
实时股票分析系统的架构与算法
架构师必看 京东咚咚架构演进
什么叫对数据敏感?怎样做数据分析?
推荐系统基础知识储备
刘德寰:数据科学的整合与细分 数据科学的七个危险趋势(视频)
实际工作中,如何做简单的数据分析?
分布式前置机器学习在威胁情报中的应用(附PPT下载)
数据科学 怎样进行大数据的入门级学习?
扛住100亿次请求 如何做一个“有把握”的春晚红包系统?(PPT下载)
从 LinkedIn 的数据处理机制学习数据架构
大数据会如何改变管理咨询公司(I)
优秀大数据GitHub项目一览
生硬的数字和数据新闻:这么近,那么远
经典大数据架构案例:酷狗音乐的大数据平台重构(长文)
揭秘中兴大数据在银行领域的系统部署
基于大数据的用户画像构建(理论篇)
【R】支持向量机模型实现
数据图处处有陷阱?五个例子教你辨真伪
如何用R绘制地图
你确定你真的懂用户画像?
数据模型需要多少训练数据?
【接地气】01 数据报表的颜色怎么配
游戏价值和数据分析新思路
【R】异常值检测
快的打车架构实践
豆瓣还是朋友圈:大数据、新方法和日常问
PPT数据图表,怎么做才好看?
大道至简的数据体系构建方法论
数据的误区及自身业务
新浪微博的用户画像是怎样构建的?
面试干货!21个必知数据科学面试题和答案part1(1-11)
易观智库:中国大数据产业生态图谱2016(附下载)
Airbnb的数据基础架构
50PB海量数据排序,谷歌是这么做的
大数据时代工程师如何应对–今日头条走进硅谷技术讲座
D3.js教学记(下)
D3.js教学记(上)
飞林沙:企业级服务公司如何赚钱?只有平台级产品才有大数据的理论
一个母婴电子商务网站的大数据平台及机器学习实践
7大板块 组成数据分析师的完整知识结构
干货:SaaS领域如何分析收入增长?
学术 | 词嵌入的类比特性有实用意义吗?
6个用好大数据的秘诀
一个数据库外行眼中的微信优化 (附专家补充)
大数据调研,如何实现快全准?
数据大师Olivier Grisel给志向高远的数据科学家的指引
数据堂肖永红:数据交易的是使用权或数据的增值,而不是数据本身(PPT附下载)
淘宝商品详情平台化思考与实践
刘译璟:百分点大数据理念和实践(图文+PPT下载)
如何快速搞定一份看起来还不错的演示文档?
【BABY夜谈大数据】决策树
数据驱动设计:数据处理流程、分析方法和实战案例
美图数据总监:Facebook的法宝,我们在产品中怎么用?
树的内核:量化树结构化数据之间的相似性
拿到用户数据之后,LinkedIn怎么赚钱?
GrowingIO张溪梦:增长黑客的核心 企业应该重视产品留存率(附PPT下载)
[译]Airbnb是如何使用数据理解用户旅行体验的?
微博推荐数据服务代理: hyper_proxy的设计和实现
星图数据谷熠:消费领域DaaS 大数据重构未来商业游戏规则(附PPT下载)
鲍忠铁:TalkingData大数据技术与应用实践(PPT下载)
【干货教材】数据分析VS业务分析需求
九枝兰专访:数字营销的核心—企业如何使用数据管理平台(DMP)进行精准营销
我们的应用系统是如何支撑千万级别用户的
R应用空间数据科学
Excel进行高级数据分析(上)
Excel进行高级数据分析(下)
国内各大互联网公司2.0版技术站点收集
网站数据分析思路导图
大数据分析报表设计开发要素
大数据需要的12个工具 推荐
YARN/MRv2 Resource Manager深入剖析—NM管理
YARN/MRv2 Resource Manager深入剖析—RMApp状态机分析
Hadoop 1.0与Hadoop 2.0资源管理方案对比
Hadoop 2.0中单点故障解决方案总结
Hadoop 2.0 (YARN)中的安全机制概述
Hadoop 新特性、改进、优化和Bug分析系列1:YARN-378
Hadoop 新特性、改进、优化和Bug分析系列2:YARN-45
Hadoop 新特性、改进、优化和Bug分析系列3:YARN-392
Hadoop版本选择探讨
探究提高Hadoop稳定性与性能的方法
《Effective C++》读书笔记(第一部分)
Hadoop分布式环境下的数据抽样
Hadoop计算能力调度器算法解析
如何编写Hadoop调度器
数据结构之红黑树
Hadoop pipes设计原理
《C++ Primer plus》学习笔记之”类”
《C++ Primer plus》学习笔记之”类继承”
《C++ Primer plus》学习笔记之”C++中的代码重用”
《C++ Primer plus》学习笔记之”异常”
《C++ Primer plus》学习笔记之”RTTI”
Hadoop pipes编程
Hadoop Streaming高级编程
《C++ Primer plus》学习笔记之”标准模板库”
《C++ Primer plus》学习笔记之”输入输出库”
Linux Shell 命令总结
算法之图搜索算法(一)
awk使用总结
素数判定算法
《C++ Primer plus》学习笔记之“函数探幽”
使用Thrift RPC编写程序
如何在Hadoop上编写MapReduce程序
怎样从10亿查询词找出出现频率最高的10个

技术贴:如何在数据库中秘密地查询隐私数据

于2017-04-01由小牛君创建

分享到:


数据库

日常生活中经常会出现这样的场景:你想在数据库上查询某个东西,但却不希望留下线索,让别人知道你查询了什么。比方说,投资人可能会在数据库上查询某支股票的信息,但却不希望任何人知道他感兴趣的股票究竟是哪一支。看上去,似乎唯一的办法就是把整个数据库全部拷回家。然而,这些数据往往都拥有非常庞大的体积,全部拷走通常都是很不现实的;另外,考虑到数据内容的隐私性和数据本身的宝贵价值,数据的持有者通常也不允许其他人把整个数据全盘拷走。不过,随着分布式数据库的广泛应用,上面的难题有了一个两全其美的好办法:假设有两个内容完全相同的数据库,投资人可以先在第一个数据库上执行一个不会透露目的的查询,再在另一个数据库上执行另一个不会透露目的的查询,两次查询结合起来便能推出想要的结果。只要没有人刻意去收集并且对比两个数据库的查询记录,那么谁也不会知道投资人真正想要查询的是什么。在这个背景下,我们有了下面这个有趣的问题。

服务器随机产生了一个 {1, 2, …, 100} 的子集 S ,并且同时发送给了 A 和 B 两名前台工作人员。 A 、 B 两名前台都接受其他人的提问,但为了保护数据,两个人都只能用“是”或者“否”来回答问题,并且都不允许同一个人重复提问。你非常关心某个数 n 是否在这个子集里。其实,你本来可以直接问 A 和 B 中的任何一个人“数字 n 是否在集合 S 里”,但是这样一来,对方就知道了你想要查询的是什么。为此,你可以向 A 和 B 各问一个问题(结合两人的回答便能推出集合 S 里是否包含数字 n ),但却不能让 A 和 B 当中的任何一个人知道你查询的是哪个数(我们假设 A 、 B 两人不会串通起来,把他们各自收到的问题联系在一起)。事实上,你需要保证 A 和 B 两人都不能从你的问题中获取到任何信息,也就是说,对于 A 和 B 当中的任何一个人来说,各种问题出现的概率不会随着 n 值的改变而改变。再换句话说,如果 n 的值变了,那么 A 和 B 各自将会听到的问题应该拥有和原来相同的概率分布。

答案:首先,自己随机生成一个 {1, 2, …, 100} 的子集 T1 (每个数都有 1/2 的概率被选进 T1 )。如果 T1 里面正好包含数字 n ,那么就把 T1 里的数字 n 去掉,把所得的结果记作 T2 ;如果 T1 里面没有数字 n ,那么就在 T1 中加入数字 n ,从而得到 T2 。现在,将 T1 发送给 A ,并询问 T1 里面是否有偶数个数正好也在 S 里。类似地,再将 T2 发送给 B ,并且询问同样的问题:在 T2 里面是否有偶数个数同时也属于 S 。注意, T1 和 T2 的唯一差别,就是一个里面有 n 一个里面没有 n 。因此,如果 A 和 B 的回答是一致的,就说明数字 n 不在 S 里面;如果 A 和 B 的回答不一致,就说明数字 n 在 S 里面。另外,容易看出,不管是 T1 还是 T2 ,从 1 到 100 每个数在里面出现的概率都是 1/2 。因此,不管是 A 还是 B ,他被问到的问题都总是具有完全相同的概率分布,这不随 n 的变化而变化。

这种方案的缺陷就是,每条询问都非常长。为了描述 T1 或者 T2 ,我们需要使用一个 100 位的 01 串,它一共有 100 个 bit 。如果 S 不是 {1, 2, …, 100} 的子集,而是 {1, 2, …, N} 的子集,那么在上述方案中,我们需要给 A 、 B 各发送 O(N) 个 bit 的数据。在 N 非常大的情况下,这么做同样是不现实的。有趣的是,如果前台不止两个人,而是四个人的话,那么我们可以做得更好:我们可以给四个人都只发送 O(√N) 个 bit 的数据,并且同样保证每个人都不能从中推出任何信息来。

为了便于说明,我们现在假设 S 是 {0, 1, 2, …, 99} 的一个子集。假设你想要知道, 67 是否在集合 S 里。于是,你首先随机生成一个 {0, 1, 2, …, 9} 的子集 T1 ,然后在里面加上数字 6 (如果 T1 里没有 6 的话)或者去掉数字 6 (如果 T1 里有 6 的话),得到 T2;再生成另一个 {0, 1, 2, …, 9} 的子集 T3 ,然后在里面加上数字 7 (如果 T3 里没有 7 的话)或者去掉数字 7 (如果 T3 里有 7 的话),得到子集 T4 。接下来,向 A 、 B 、 C 、 D 依次询问下面四个问题

  • A :在所有十位数属于 T1 并且个位数属于 T3 的数当中,是否有偶数个数在集合 S 里。
  • B :在所有十位数属于 T1 并且个位数属于 T4 的数当中,是否有偶数个数在集合 S 里。
  • C :在所有十位数属于 T2 并且个位数属于 T3 的数当中,是否有偶数个数在集合 S 里。
  • D :在所有十位数属于 T2 并且个位数属于 T4 的数当中,是否有偶数个数在集合 S 里。

如果 T1 等于 {2, 4, 7, 8, 6} ,那么 T2 就应该等于 {2, 4, 7, 8} ;如果 T3 等于 {2, 3, 5} ,那么 T4 就应该等于 {2, 3, 5, 7} 。四次询问之后我们便可得知,在下图各种颜色的方框中,属于集合 S 的数有奇数个还是偶数个。结合 A 、 B 的回答(蓝色方框和黄色方框),我们就能推出,在集合 S 当中,十位数属于 T1 并且个位数恰好为 7 的数有奇数个还是偶数个;结合 C 、 D 的回答(红色方框和绿色方框),我们就能推出,在集合 S 当中,十位数属于 T2 并且个位数恰好为 7 的数有奇数个还是偶数个。于是,我们就可以知道,十位数恰好为 6 并且个位数恰好为 7 的数是否在集合 S 当中了。

数据库

类似地,如果集合 S 是 {1, 2, …, N} 的子集,那么我们可以对这 N 个数进行重新编码,使得每个数都由高位和低位组成。那么,高位和低位的取值范围都是从 1 到 √N 。在整个协议中,我们需要给每个人发送两个 {1, 2, …, √N} 的子集,这相当于两个 √N 位的 01 串,因此其数据量为 2√N 个 bit ,也就是 O(√N) 个 bit 。

不过,请注意,虽然与每个人交流的数据量少了,但这次却有四个人了,因而你需要发送四个这么大的数据。当 N 很小的时候, 4 · 2√N 很可能反而比 2 · N 更大。

同样地,如果我们有 2d 个人,我们就可以把 1 到 N 里面的所有数都看作 d 位数,每一位的取值范围是从 1 到 N1/d 。为了完成一次查询,我们需要给每个人发送 d 个 {1, 2, …, N1/d} 的子集,因此总共需要发送 2d · d · N1/d 个 bit 。对于不同的 N ,我们可以选取最合适的 d ,使得 2d · d · N1/d 最小。例如,下图所示的就是 N = 1 000 000 时函数 f(d) = 2d · d · N1/d 的图像,可见 d = 4 时的通信成本是最低的。因此,如果查询点足够多的话,我们可以选择在 16 个不同的地方进行查询。

数据库

感谢matrix67的投递。

End.