大数据培训新三板挂牌机构 股票代码:837906 | EN CN
阿里巴巴菜鸟级数据产品经理半年回顾总结篇
干货教程:如何绘制业务流程图(二)
干货教程:如何绘制业务流程图(一)
技术贴:如何在数据库中秘密地查询隐私数据
攻略教程:信息图(infographic)是怎么做出来的?
分析师一定要看!用数据讲故事的五个步骤
技术篇:怎样玩转千万级别的数据?
北漂书生:大数据时代SEO数据如何搜集和分析
干货,从十大问题重新认识并读懂互联网
相似图片搜索、算法、识别的原理解析(下)
相似图片搜索、算法、识别的原理解析(上)
制作信息图时请遵循这10条原则
提高表格可读性的一些技巧,适用于Excel、PPT等数据报表
实用教程:如何让Excel图表更具“商务气质”?
一张数据信息图是这样制作完成的
菜鸟读财报,如何从上市公司财报中挖情报?
北大数据分析老鸟写给学弟们一封信
如何一步一步制作出高品质数据信息图?
总结:海量数据分析处理的十个方法
【实战经验】数据分析师如何了解老板真正想法?
零售业数据分析那些事儿
数据分析时l常用电子表格公式【大全】
用数据来告诉你 上市公司财报的秘密
这12个数据能 帮你搞定淘宝店铺
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(四)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(三)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(二)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(一)
淘宝网店从激活到挽留,4步走玩转数据营销
文案怎样写才有意思、不空洞、打动人?
入门级扫盲贴:数据分析的步骤有哪些?
关系即数据,论社交媒体的关系转换
数据的力量,苹果教你用数据鄙视竞争对手
谁说文科生不能做数据分析?数据分析入行→技能提升→优势
产品运营数据分析——SPSS数据分组案例
如何追踪iPhone和iPad等移动设备的用户行为数据?
阿里巴巴中国站:用户满意度指标权重计算方法
广告中的AdNetwork、AdExchange、DSP、SSP、RTB和DMP是什么?
信息图制作教程:关于数值的表现
为什么大数据会如此轰动?(值得深度的文章)
多图技术贴:深入浅出解析大数据平台架构
面板数据分析中标准误的估计修正——根据Peterson (2009)的归纳
财务官、投资人、CIO看过来:给企业数据定价
推荐系统中常用算法 以及优点缺点对比
探索Weotta搜索引擎背后的大数据技术
如何识别虚假数据?
为什么我们像驯化小狗那样驯化算法
程序员必须知道的10大基础实用算法及其讲解
电子商务:最影响转化率的九大要素
如何迅速成为一名数据分析师?
想从事大数据、海量数据处理相关的工作,如何自学打基础?
如何用亚马逊弹性MapReduce分析大数据?
译文:机器学习算法基础知识
给hadoop新手的一封信:Hadoop入门自学及对就业的帮助
从入门到精通,我是这样学习算法的
小商家,从老客户身上获取的数据才更有意义
13页PPT讲述:大数据下网站数据分析应用
40页PPT详解:京东大数据基础构架与创新应用
67页PPT解密搜索引擎背后的大技术:知识图谱,大数据语义链接的基石
营销洞察力——10个营销度量指标
技术篇:前端数据之美如何展示?
董飞:美国大数据工程师面试攻略【PPT】
easel:如何制作好的信息图——来自专家的顶级技巧
大数据实操:以3D打印机为例,如何知道卖点有没有市场需求?
大数据建模 需要了解的九大形式
用户画像数据建模方法
从规划开始,公司or企业如何入手和实施大数据?
干货:商品信息数据分析和展现系统的设计与开发
高手教你用Excel制作百度迁徙数据地图
50篇干货:淘宝店/电子商务如何玩转数据分析?
精华索引:大数据实际应用案例50篇
验证最小化可行产品 (MVP) 的 15 种方法
干货:数据分析师的完整知识结构
大数据技术Hadoop面试题,看看你能答对多少?答案在后面
用SPSS做数据分析?先弄懂SPSS的基础知识吧
怎样做出优秀的扁平化设计风格PPT? 扁平化PPT设计手册#3
解答│做大数据过程中遇到的13个问题
40页PPT│社交网络发展的新动力:大数据与众包
以Amazon、豆瓣网为例,探索推荐引擎内部的秘密#1
怎样做出优秀的扁平化设计风格PPT?#2
怎样做出优秀的扁平化设计风格PPT?#1
36页PPT│大数据分析关键技术在腾讯的应用服务创新
如何丰满地做SWOT分析?
【35页PPT】TalkingData研发副总阎志涛:移动互联网大数据处理系统架构
27页PPT|以珍爱网为例,如何构建有业务价值的数据分析系统?
国外数据新闻资源分享
21页PPT重磅发布:Mariana——腾讯深度学习平台的进展与应用
从0到100——知乎架构变迁史
PPT解读:百度大数据质量保障方案探索
45页PPT|大数据环境下实现一个O2O通用推荐引擎的实践
从数据看豆瓣兴衰
深度学习系列:解密最接近人脑的智能学习机器——深度学习及并行化实现(四)
重磅推荐:129页PPT讲述移动时代创业黄金法则 via:腾讯企鹅智酷
重磅推荐:大数据工程师飞林沙的年终总结&算法数据的思考
OpenKN——网络大数据时代的知识计算引擎
大数据下城市计算的典型应用
技术贴:大数据告诉你,如何给微信公众号文章取标题?
你的QQ暴露了你的心——QQ大数据及其应用介绍PPT
如何从企业报表看企业的生存能力?
实用的大数据技巧合集
技术帝揭秘:充电宝是如何盗取你的个人隐私的?
重磅!50页PPT揭秘腾讯大数据平台与推荐应用架构
原创教程:饼图之复合饼图与双层饼图(1)
PPT:大数据时代的设计特点——不了解这个你做不了今天的设计
教程贴:如何用方程式写春联?
原创教程:如何用Excel制作简易动态对比图
深度译文:机器学习那些事
教程帖:数学之美——手把手教你用Excel画心(动态图)
董老师走进斯坦福,聊聊硅谷创业公司和大数据的事儿(附课件PPT下载)
【限时】年度钜献,108个大数据文档PDF开放下载
董飞专栏:大数据入门——大数据相关技术、Hadoop生态、LinkedIn内部实战
亿级用户下的新浪微博平台架构
一张图了解磁盘里的数据结构
浅析数据化设计思维在阿里系产品的应用
美团推荐算法实践
一个P2P创业公司有哪些部门,都是做什么的?
一个P2P平台的详细运营框架是怎样的?
机器学习中的算法——决策树模型组合之随机森林与GBDT
神经网络简史
58页PPT看懂互联网趋势,大数据/物联网/云计算/4G都有了
广点通背后的大数据技术秘密——大规模主题模型建模及其在腾讯业务中的应用(附PPT)
微信红包之CBA实践PPT——移动互联网海量访问系统设计
一文读懂机器学习,大数据/自然语言处理/算法全有了……
搜狐新闻客户端的背后大数据技术原理——推荐系统(PPT)
原创教程:用Excel做动态双层饼图
半小时读懂PMP私有广告交易市场
怎样分析样本调研数据(译)
PPT:支付宝背后的大数据技术——DataLab、Higo的实践及应用
大数据技术人员的工具包——开源大数据处理工具list(限时下载)
计算机视觉:随机森林算法在人体识别中的应用
24页PPT:机器学习——支持向量机SVM简介(附下载)
互联网高手教你如何搜集你想要的信息
深度:对地观测大数据处理、挑战与思考
原创教程:用Excel做饼图之复合饼图与双层饼图(2)
移动大数据时代: 无线网络的挑战与机遇(附pdf下载)
Excel使用技巧——25招必学秘技
【年度热门】加上这些 Excel 技能点,秒杀众人(多图)
原创教程:用Excel做纵向折线图
知识图谱——机器大脑中的知识库
何明科专栏:用数据化的方式解析投资条款
DT时代,如何用大数据分析创造商业价值(23页PPT)
MIT牛人梳理脉络详解宏伟现代数据体系
你的老婆是怎么算出来的?揭秘佳缘用户推荐系统
飞林沙:商品推荐算法&推荐解释
PPT:如何成为真正的数据架构师?(附下载)
开源大数据查询分析引擎现状
董飞专栏:打造数据产品必知秘籍
译文:如何做强大又漂亮的信息图
如何使用Amazon Machine Learning构建机器学习预测模型
如何运用数据协助货架管理(内附26张PPT)
SVM算法
主流大数据系统在后台的层次角色及数据流向
PPT:阿里全息大数据构建与应用
人脸识别技术大总结——Face Detection & Alignment
教程:用Excel制作成对条形图
易观智库:大数据下的用户分析及用户画像(18页PPT附下载)
技术向:如何设计企业级大数据分析平台?
电商数据分析基础指标体系
IBM SPSS Modeler 决策树之银行行销预测应用分析
拓扑数据分析与机器学习的相互促进
基于 R 语言和 SPSS 的决策树算法介绍及应用
用php做爬虫 百万级别知乎用户数据爬取与分析
另类新浪微博基本数据采集方法
以10万+阅读的文章为例 教你做微信公众号的运营数据分析
破解数据三大难题:变现?交易?隐私?
微店的大数据平台建设实践与探讨
阿里巴巴PPT:大数据基础建议及产品应用之道
基于社会媒体的预测技术
人工智能简史
技巧:演讲中怎样用数据说话
马云和小贝选谁做老公?写给非数据人的数据世界入门指南
掘金大数据产业链:上游资源+中游技术+下游应用
原创教程:手把手教你用Excel做多层折线图
销售分析:如何从数据指标发现背后的故事
如何一步步从数据产品菜鸟走到骨干数据产品
也来谈谈微博的用户画像
行走在网格之间:微博用户关系模型
如何拍出和明星一样美爆的自拍照?斯坦福大学用卷积神经网络建模告诉你
运营商如何玩转大数据? 浙江移动云计算和大数据实践(PPT附下载)
大数据分析的集中化之路 建设银行大数据应用实践PPT
腾讯防刷负责人:基于用户画像大数据的电商防刷架构
创业提案的逻辑
友盟分享 | 移动大数据平台架构思想以及实践经验
寻路推荐 豆瓣推荐系统实践之路
“小数据”的统计学
重磅!8大策略让你对抗机器学习数据集里的不均衡数据
小团队撬动大数据——当当推荐团队的机器学习实践
微博推荐架构的演进
科普文 手把手教你微信公众号数据分析
信息图制作的六个注意点
【权利的游戏】剧透新玩法:情理之中?意料之外
推荐系统(Recommender System)的技术基础
核心算法 谷歌如何从网络的大海里捞到针
Quora数据科学家和机器学习工程师是如何合作的
阿里巴巴PPT:大数据下的数据安全
数据建模那点事儿
全民拥抱Docker云–Lhotse系统经验分享
实时股票分析系统的架构与算法
架构师必看 京东咚咚架构演进
什么叫对数据敏感?怎样做数据分析?
推荐系统基础知识储备
刘德寰:数据科学的整合与细分 数据科学的七个危险趋势(视频)
实际工作中,如何做简单的数据分析?
分布式前置机器学习在威胁情报中的应用(附PPT下载)
数据科学 怎样进行大数据的入门级学习?
扛住100亿次请求 如何做一个“有把握”的春晚红包系统?(PPT下载)
从 LinkedIn 的数据处理机制学习数据架构
大数据会如何改变管理咨询公司(I)
优秀大数据GitHub项目一览
生硬的数字和数据新闻:这么近,那么远
经典大数据架构案例:酷狗音乐的大数据平台重构(长文)
揭秘中兴大数据在银行领域的系统部署
基于大数据的用户画像构建(理论篇)
【R】支持向量机模型实现
数据图处处有陷阱?五个例子教你辨真伪
如何用R绘制地图
你确定你真的懂用户画像?
数据模型需要多少训练数据?
【接地气】01 数据报表的颜色怎么配
游戏价值和数据分析新思路
【R】异常值检测
快的打车架构实践
豆瓣还是朋友圈:大数据、新方法和日常问
PPT数据图表,怎么做才好看?
大道至简的数据体系构建方法论
数据的误区及自身业务
新浪微博的用户画像是怎样构建的?
面试干货!21个必知数据科学面试题和答案part1(1-11)
易观智库:中国大数据产业生态图谱2016(附下载)
Airbnb的数据基础架构
50PB海量数据排序,谷歌是这么做的
大数据时代工程师如何应对–今日头条走进硅谷技术讲座
D3.js教学记(下)
D3.js教学记(上)
飞林沙:企业级服务公司如何赚钱?只有平台级产品才有大数据的理论
一个母婴电子商务网站的大数据平台及机器学习实践
7大板块 组成数据分析师的完整知识结构
干货:SaaS领域如何分析收入增长?
学术 | 词嵌入的类比特性有实用意义吗?
6个用好大数据的秘诀
一个数据库外行眼中的微信优化 (附专家补充)
大数据调研,如何实现快全准?
数据大师Olivier Grisel给志向高远的数据科学家的指引
数据堂肖永红:数据交易的是使用权或数据的增值,而不是数据本身(PPT附下载)
淘宝商品详情平台化思考与实践
刘译璟:百分点大数据理念和实践(图文+PPT下载)
如何快速搞定一份看起来还不错的演示文档?
【BABY夜谈大数据】决策树
数据驱动设计:数据处理流程、分析方法和实战案例
美图数据总监:Facebook的法宝,我们在产品中怎么用?
树的内核:量化树结构化数据之间的相似性
拿到用户数据之后,LinkedIn怎么赚钱?
GrowingIO张溪梦:增长黑客的核心 企业应该重视产品留存率(附PPT下载)
[译]Airbnb是如何使用数据理解用户旅行体验的?
微博推荐数据服务代理: hyper_proxy的设计和实现
星图数据谷熠:消费领域DaaS 大数据重构未来商业游戏规则(附PPT下载)
鲍忠铁:TalkingData大数据技术与应用实践(PPT下载)
【干货教材】数据分析VS业务分析需求
九枝兰专访:数字营销的核心—企业如何使用数据管理平台(DMP)进行精准营销
我们的应用系统是如何支撑千万级别用户的
R应用空间数据科学
Excel进行高级数据分析(上)
Excel进行高级数据分析(下)
国内各大互联网公司2.0版技术站点收集
网站数据分析思路导图
大数据分析报表设计开发要素
大数据需要的12个工具 推荐
YARN/MRv2 Resource Manager深入剖析—NM管理
YARN/MRv2 Resource Manager深入剖析—RMApp状态机分析
Hadoop 1.0与Hadoop 2.0资源管理方案对比
Hadoop 2.0中单点故障解决方案总结
Hadoop 2.0 (YARN)中的安全机制概述
Hadoop 新特性、改进、优化和Bug分析系列1:YARN-378
Hadoop 新特性、改进、优化和Bug分析系列2:YARN-45
Hadoop 新特性、改进、优化和Bug分析系列3:YARN-392
Hadoop版本选择探讨
探究提高Hadoop稳定性与性能的方法
《Effective C++》读书笔记(第一部分)
Hadoop分布式环境下的数据抽样
Hadoop计算能力调度器算法解析
如何编写Hadoop调度器
数据结构之红黑树
Hadoop pipes设计原理
《C++ Primer plus》学习笔记之”类”
《C++ Primer plus》学习笔记之”类继承”
《C++ Primer plus》学习笔记之”C++中的代码重用”
《C++ Primer plus》学习笔记之”异常”
《C++ Primer plus》学习笔记之”RTTI”
Hadoop pipes编程
Hadoop Streaming高级编程
《C++ Primer plus》学习笔记之”标准模板库”
《C++ Primer plus》学习笔记之”输入输出库”
Linux Shell 命令总结
算法之图搜索算法(一)
awk使用总结
素数判定算法
《C++ Primer plus》学习笔记之“函数探幽”
使用Thrift RPC编写程序
如何在Hadoop上编写MapReduce程序
怎样从10亿查询词找出出现频率最高的10个

如何追踪iPhone和iPad等移动设备的用户行为数据?

于2017-04-01由小牛君创建

分享到:


【前言】

关于移动设备如何监测用户的行为,看似容易,其实不容易。容易的是,如果把移动设备就当成桌面PC,那么其实无论是对App还是对Web,都可以沿用目前在PC上的方式:Page Tagging和Event Tracking。但问题在于移动设备存在更多的灵活性,人们不止使用一个设备,人们还在移动设备和桌面设备之间切换,而且人们还在web和app之间切换。这样,一个人所发生的跨域和跨界的行为就太多了,如果监测不到这些“跨”行为,我们的监测就无法准确。后PC时代,互联网用户的监测也面临新的课题和挑战。

在今年的SEMPO会议上,我有30分钟的演讲,介绍这个话题。不过时间太短,很难展开,但很明显在场的听众非常感兴趣。因此,我又觉得该有文章研究一下这个领域,在这个文章和下个文章中,我将介绍我所了解到的方法。

这一篇文章,来自于美国同行专家Kevin Trilli的一篇文章,原文题目是《Mobile Tracking: How it works and why it’s different》,我请我的朋友Ptmind的李莹同学帮我做了全文的翻译。非常感谢她的全情帮助!这篇文章不容易,但翻译的非常有水准!文中没有引号的部分是我的注解。

【正文】

移动设备的用户行为数据如何追踪

“本质上,移动业务的数据监测和我们常见的网站监测在原理上基本共通。举个典型的例子,我们都想要能够贯通各域的跨站监测,但是这种跨站监测的标识信息存活周期偏偏太短,所以我们不得不使用能够存活更久的单域标识来进行监测。然而,在移动监测的世界里,还有一些小波澜会让这些事情变得更加棘手。

“下文将讲述一些移动监测所使用的技术,并且会强调这些技术和我们传统的线上监测有何不同。其实,当下已经有不少移动广告投放商在对用户进行着标识和监测。简洁起见,下文假设我们是通过广告网络(Ad Network)发放广告,并进行相关的监测追踪。不过这并不代表在只有广告网络才会使用这些技术,在这个供应链中,当然还有其它的使用者。另外还要声明的是,尽管不乏有人担忧移动广告运营链中所采集的用户信息会涉及威胁用户隐私,但本文所述的广告商以及本文意指阐述的内容,都绝对不会涉及任何个人可识别信息进行行为分析,此外,在推广频率和独立用户数的计算方面,对用户信息的使用也做出了最大限度的保护和最有限程度的使用。

“移动广告网络所面临的一大挑战,就是移动广告的受众对象同时使用着移动网站和App(指mobile application,即移动应用,下同)两种内容媒介。在移动设备上,App和网站分属不同的域,被不同的沙盒所分隔,也使用着不同的标识信息。对于广告网络,这就意味着同一个用户可能被拆分成多个统计形象,广告网络还需要另寻他法将这些不同的识别信息整合到一起。对于这些方法,后文将有详述。

“我们先来谈谈移动App。对于App,开发者们会调用基于操作系统的标识符来标记独立用户。放眼Android和iOS两大巨头平台,两家分别使用了Android_ID和UDID来做这个事情。安卓同时还支持更多的系统标识信息,包括设备身份码(例如IMEI,MEID或ESN,根据网络不同而异),对于电话设备,可提供用户识别码(SIM卡上的IMSI码),如果设备支持WIFI,还能够提供WLAN MAC地址(iOS上也有这项信息)。这些基于操作系统的标识符着实令广告网络中的各位欣喜若狂,因为无论APP的开发者是谁,这个标识符都不会变。这样一来,太可以实现跨应用追踪独立用户。

“不过,这种情况下用户基本上没什么自主权逃离监控,于是这一现象促使Apple在iOS5之后开始弃用了UDID。不过,所谓弃用并不代表开发者和广告网络没有办法再用它(他们的确还在用),但Apple强调了不建议开发者使用UDID,并且也意味着在未来的版本中有可能将UDID废除(彻彻底底的告别)。(译注:目前UDID已经废除,2013年年中,新提交的涉及使用UDID的APP已无法通过审核,只有此前提交的仍然可以使用。)

移动设备的用户行为数据如何追踪

失去了UDID,Apple转而鼓励开发者们自行建立独立用户标识信息。不过当然,这救不了需要贯通信息的广告网络。为了达到跨应用检测,大家想到不少曲线救国的方案,但同样面临到和Apple弃用UDID同样的隐私担忧。

“接下来我们看看移动网站(mobile web)的情况,和传统线上网站一样,对于跨域监测我们采用的是第三方cookie(书作者注:对于自己网站上用户行为的监测,则还是使用了第一方cookie,原理跟前面谈到的client side tracking方法是完全一样的)。但和传统线上网站不同的是,由于移动设备上缺乏安全软件,广告网络对第三方cookie能写能查。第三方cookie在Android设备上是有效的。常规的Android用户习惯只去使用预装好的浏览器或者将特定的浏览器设成默认,而不再更换其他浏览器。而作为Apple的预装浏览器,Safari的第三方cookie默认设成了关闭,这也就意味着广告网络没法在Apple设备上进行跨域监测。不过,广告网络也采用了一些其它方法来监测iPhone和iPad用户的访问会话。

“一种方法是取巧于Safari浏览器的一项安全漏洞,如果广告网络运营者能够在页面中嵌入一个透明的iframe,就可以植入cookies。这项由斯坦福大学的毕业生Jonathan Mayer做出的发现一度引起了广泛关注。另一种方法,是去采集浏览器本身披露的信息,为该设备建立一份“指纹档案”。结合浏览器的使用程度、是否支持Javascript等所获信息程度不同,最乐观能达到94%的准确度

“还有一种方法,是结合存活期较长的单一域标识信息(长期标识),并借助一个临时的跨域标识符来帮助广告网络达成所需目的。这个长期标识和第一方cookie关联(一对一映射),会在请求广告时作为一种UID信息传递给广告网络。在一次访问周期内,我们可以使用一些在用户访问期间能够保持不变的信息作为临时踏板,例如IP地址,或者通过移动运营商的WAP网关(所有的浏览器会话都会通过WAP网关进行传输)传递的标识符。这样多个网站可以在一个visit周期内被关联起来,被记录为是这个访问者浏览过的网站。而在下一次访问周期内,访问者的IP地址或者WAP网关可能跟第一次访问时不一样了,我们该如何把下一次访问跟前一次访问关联起来归到这一个访问者(而不是两个访问者)呢?为了能够辨别这仍然是前一次的某个访问者,我们观察新一次访问到的所有网站中记录的第一方cookie有没有跟之前的访问网站记录相匹配的。在下图的例子中,正好有这样的情况。这个访问者在第一次访问中访问了Publisher 1、2、3;而第二次访问中访问了Publisher 1、5、19。由于每个网站都有第一方cookie,而两次访问又正好都访问了Publisher 1,因此可以通过publisher 1的第一方cookie知道两次访问是同一个访问者又回来了。并且我们也就可以知道,Publisher 1、2、3、5和9都是这一个访问者浏览的。根据运营商的不同以及运营商和广告商的关系,这个网关识别符存活期可长可短,理想情况下这个标识符可能永远不变。不过显然,这项技术只对于用户常常访问的网站才有效,而且广告网络也基本没办法实时使用这些信息。这种方法可以和数字指纹结合使用,能够提高指纹的准确性或减少生成指纹所需的计算次数。下图对上述方法进行了示例:

移动设备的用户行为数据如何追踪

“不过,如果正好有访问者玩儿了App,又过了会儿上了网(通过手机浏览器),那么该如何辨识他们是同一个人呢?

“如上文所述,移动网站和APP分属不同的域,也各自使用着不同的标识符。从广告商的角度来看,这意味着用着同一台设备的同一个人,却被分离成了两个。从用户的角度来看,这不忠实于用户所选的拒绝追踪设置(包括监测和行为分析),明明在一个域下进行过追踪设置(例如在浏览器中停用了Cookie或设置了禁止追踪),在另一个域下却未被识别,因为广告网络也分辨不出来这是之前设置过拒绝追踪的那个人。而且App和网站页面之间为什么常常会跳来跳去,这也让人难以理解。

“将App和移动网站关联起来的最常见方法,通常是在用户点击一个App内的广告时生效的。用户点击的这个广告时指向目的地的URL对于该用户而言是唯一的,它带有一个能够映射到App域下用户标识符的URL后面的参数,而这个URL和参数,对于同一个设备上浏览网页时的相同广告主的广告,也是一样。即无论在App上做广告,还是在web上做广告,广告的URL后面的参数都必须一样,且这个URL用来标识这个用户。当用户转跳到了广告主的网站上,广告网络就能通过URL尾参中的标识符将App域下的标识符和网站的关联到一起。广告网络也会通过各种技术进行反向定位(举一个重要的使用场景:当用户在网站上看到一个关于新App的广告,例如最新、最酷的游戏,广告网络想要知道这个用户是否最终动心点击广告并且真正完成了下载。)不过,这些技术的应用前提是广告网络能够访问两种不同域下共有的存储信息,各操作系统对此的门槛也高低不同。”

 

我的评注:

这个文章所描述的,是目前移动营销数据监测的一个缩影。移动终端比PC先天好的地方在于,有类似UDID或者IMEI这样的永久性标识来锁定一个设备,这使我们对于unique类数据(例如unique impression,unique click,unique visitor等)的追踪显得更加容易。但这些永久性标识却存在较大的隐私争议,而造成应用范围的不断萎缩。但如果没有这些永久标识,追踪unique类数据就比PC更麻烦了。这种情况下我们仍然不得不求助于cookie,第一方的和第三方的(事实上mobile cookie和web cookie实现方法是不同的,但它们的作用几乎一样,所以也被开发者沿用了cookie的名称),即使是在App中,我们也用曲线救国的方法装入cookie。

移动设备的用户行为数据如何追踪

但cookie也遇到了问题,除了仍然让人心烦意乱的隐私问题,另一个麻烦是在用户体验上的,iOS系统下,可能会造成用户在点击进入App时,突然被踢出App,打开一个浏览器,然后又被踹回App的体验。Apple也在开始禁止开发者使用cookie追踪技术

上面的原理全部集中在如何进行用户辨识和跨域(以及跨界,即跨web和app)上,那么如何辨识web上或是App上用户的具体行为呢?

从mobile web的角度看,与PC上的web的用户行为追踪原理没有太大的不同,同样需要依赖于cookie,或至少得用pixel tracking的方法(关于什么是pixel tracking,我正在写的书中间会详细说明)。而App内用户行为的追踪最常用的方法是通过SDK(软件开发工具包)在App内放置监测程序的头文件、库和其他模块,同时对你感兴趣的用户交互行为单独加上代码进行追踪,这颇像我们后面小节中要讲到的event tracking(事件追踪)的方法。具体的添加方法我不打算详细说明(它实际上就是一个技术执行手册),如果有朋友有兴趣,可以直接参考Google Analytics SDK的安装说明,见这里:https://developers.google.com/analytics/devguides/collection/

via:网站分析在中国

End.