首家大数据培训挂牌机构 股票代码:837906 | EN CN
阿里巴巴菜鸟级数据产品经理半年回顾总结篇
干货教程:如何绘制业务流程图(二)
干货教程:如何绘制业务流程图(一)
技术贴:如何在数据库中秘密地查询隐私数据
攻略教程:信息图(infographic)是怎么做出来的?
分析师一定要看!用数据讲故事的五个步骤
技术篇:怎样玩转千万级别的数据?
北漂书生:大数据时代SEO数据如何搜集和分析
干货,从十大问题重新认识并读懂互联网
相似图片搜索、算法、识别的原理解析(下)
相似图片搜索、算法、识别的原理解析(上)
制作信息图时请遵循这10条原则
提高表格可读性的一些技巧,适用于Excel、PPT等数据报表
实用教程:如何让Excel图表更具“商务气质”?
一张数据信息图是这样制作完成的
菜鸟读财报,如何从上市公司财报中挖情报?
北大数据分析老鸟写给学弟们一封信
如何一步一步制作出高品质数据信息图?
总结:海量数据分析处理的十个方法
【实战经验】数据分析师如何了解老板真正想法?
零售业数据分析那些事儿
数据分析时l常用电子表格公式【大全】
用数据来告诉你 上市公司财报的秘密
这12个数据能 帮你搞定淘宝店铺
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(四)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(三)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(二)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(一)
淘宝网店从激活到挽留,4步走玩转数据营销
文案怎样写才有意思、不空洞、打动人?
入门级扫盲贴:数据分析的步骤有哪些?
关系即数据,论社交媒体的关系转换
数据的力量,苹果教你用数据鄙视竞争对手
谁说文科生不能做数据分析?数据分析入行→技能提升→优势
产品运营数据分析——SPSS数据分组案例
如何追踪iPhone和iPad等移动设备的用户行为数据?
阿里巴巴中国站:用户满意度指标权重计算方法
广告中的AdNetwork、AdExchange、DSP、SSP、RTB和DMP是什么?
信息图制作教程:关于数值的表现
为什么大数据会如此轰动?(值得深度的文章)
多图技术贴:深入浅出解析大数据平台架构
面板数据分析中标准误的估计修正——根据Peterson (2009)的归纳
财务官、投资人、CIO看过来:给企业数据定价
推荐系统中常用算法 以及优点缺点对比
探索Weotta搜索引擎背后的大数据技术
如何识别虚假数据?
为什么我们像驯化小狗那样驯化算法
程序员必须知道的10大基础实用算法及其讲解
电子商务:最影响转化率的九大要素
如何迅速成为一名数据分析师?
想从事大数据、海量数据处理相关的工作,如何自学打基础?
如何用亚马逊弹性MapReduce分析大数据?
译文:机器学习算法基础知识
给hadoop新手的一封信:Hadoop入门自学及对就业的帮助
从入门到精通,我是这样学习算法的
小商家,从老客户身上获取的数据才更有意义
13页PPT讲述:大数据下网站数据分析应用
40页PPT详解:京东大数据基础构架与创新应用
67页PPT解密搜索引擎背后的大技术:知识图谱,大数据语义链接的基石
营销洞察力——10个营销度量指标
技术篇:前端数据之美如何展示?
董飞:美国大数据工程师面试攻略【PPT】
easel:如何制作好的信息图——来自专家的顶级技巧
大数据实操:以3D打印机为例,如何知道卖点有没有市场需求?
大数据建模 需要了解的九大形式
用户画像数据建模方法
从规划开始,公司or企业如何入手和实施大数据?
干货:商品信息数据分析和展现系统的设计与开发
高手教你用Excel制作百度迁徙数据地图
50篇干货:淘宝店/电子商务如何玩转数据分析?
精华索引:大数据实际应用案例50篇
验证最小化可行产品 (MVP) 的 15 种方法
干货:数据分析师的完整知识结构
大数据技术Hadoop面试题,看看你能答对多少?答案在后面
用SPSS做数据分析?先弄懂SPSS的基础知识吧
怎样做出优秀的扁平化设计风格PPT? 扁平化PPT设计手册#3
解答│做大数据过程中遇到的13个问题
40页PPT│社交网络发展的新动力:大数据与众包
以Amazon、豆瓣网为例,探索推荐引擎内部的秘密#1
怎样做出优秀的扁平化设计风格PPT?#2
怎样做出优秀的扁平化设计风格PPT?#1
36页PPT│大数据分析关键技术在腾讯的应用服务创新
如何丰满地做SWOT分析?
【35页PPT】TalkingData研发副总阎志涛:移动互联网大数据处理系统架构
27页PPT|以珍爱网为例,如何构建有业务价值的数据分析系统?
国外数据新闻资源分享
21页PPT重磅发布:Mariana——腾讯深度学习平台的进展与应用
从0到100——知乎架构变迁史
PPT解读:百度大数据质量保障方案探索
45页PPT|大数据环境下实现一个O2O通用推荐引擎的实践
从数据看豆瓣兴衰
深度学习系列:解密最接近人脑的智能学习机器——深度学习及并行化实现(四)
重磅推荐:129页PPT讲述移动时代创业黄金法则 via:腾讯企鹅智酷
重磅推荐:大数据工程师飞林沙的年终总结&算法数据的思考
OpenKN——网络大数据时代的知识计算引擎
大数据下城市计算的典型应用
技术贴:大数据告诉你,如何给微信公众号文章取标题?
你的QQ暴露了你的心——QQ大数据及其应用介绍PPT
如何从企业报表看企业的生存能力?
实用的大数据技巧合集
技术帝揭秘:充电宝是如何盗取你的个人隐私的?
重磅!50页PPT揭秘腾讯大数据平台与推荐应用架构
原创教程:饼图之复合饼图与双层饼图(1)
PPT:大数据时代的设计特点——不了解这个你做不了今天的设计
教程贴:如何用方程式写春联?
原创教程:如何用Excel制作简易动态对比图
深度译文:机器学习那些事
教程帖:数学之美——手把手教你用Excel画心(动态图)
董老师走进斯坦福,聊聊硅谷创业公司和大数据的事儿(附课件PPT下载)
【限时】年度钜献,108个大数据文档PDF开放下载
董飞专栏:大数据入门——大数据相关技术、Hadoop生态、LinkedIn内部实战
亿级用户下的新浪微博平台架构
一张图了解磁盘里的数据结构
浅析数据化设计思维在阿里系产品的应用
美团推荐算法实践
一个P2P创业公司有哪些部门,都是做什么的?
一个P2P平台的详细运营框架是怎样的?
机器学习中的算法——决策树模型组合之随机森林与GBDT
神经网络简史
58页PPT看懂互联网趋势,大数据/物联网/云计算/4G都有了
广点通背后的大数据技术秘密——大规模主题模型建模及其在腾讯业务中的应用(附PPT)
微信红包之CBA实践PPT——移动互联网海量访问系统设计
一文读懂机器学习,大数据/自然语言处理/算法全有了……
搜狐新闻客户端的背后大数据技术原理——推荐系统(PPT)
原创教程:用Excel做动态双层饼图
半小时读懂PMP私有广告交易市场
怎样分析样本调研数据(译)
PPT:支付宝背后的大数据技术——DataLab、Higo的实践及应用
大数据技术人员的工具包——开源大数据处理工具list(限时下载)
计算机视觉:随机森林算法在人体识别中的应用
24页PPT:机器学习——支持向量机SVM简介(附下载)
互联网高手教你如何搜集你想要的信息
深度:对地观测大数据处理、挑战与思考
原创教程:用Excel做饼图之复合饼图与双层饼图(2)
移动大数据时代: 无线网络的挑战与机遇(附pdf下载)
Excel使用技巧——25招必学秘技
【年度热门】加上这些 Excel 技能点,秒杀众人(多图)
原创教程:用Excel做纵向折线图
知识图谱——机器大脑中的知识库
何明科专栏:用数据化的方式解析投资条款
DT时代,如何用大数据分析创造商业价值(23页PPT)
MIT牛人梳理脉络详解宏伟现代数据体系
你的老婆是怎么算出来的?揭秘佳缘用户推荐系统
飞林沙:商品推荐算法&推荐解释
PPT:如何成为真正的数据架构师?(附下载)
开源大数据查询分析引擎现状
董飞专栏:打造数据产品必知秘籍
译文:如何做强大又漂亮的信息图
如何使用Amazon Machine Learning构建机器学习预测模型
如何运用数据协助货架管理(内附26张PPT)
SVM算法
主流大数据系统在后台的层次角色及数据流向
PPT:阿里全息大数据构建与应用
人脸识别技术大总结——Face Detection & Alignment
教程:用Excel制作成对条形图
易观智库:大数据下的用户分析及用户画像(18页PPT附下载)
技术向:如何设计企业级大数据分析平台?
电商数据分析基础指标体系
IBM SPSS Modeler 决策树之银行行销预测应用分析
拓扑数据分析与机器学习的相互促进
基于 R 语言和 SPSS 的决策树算法介绍及应用
用php做爬虫 百万级别知乎用户数据爬取与分析
另类新浪微博基本数据采集方法
以10万+阅读的文章为例 教你做微信公众号的运营数据分析
破解数据三大难题:变现?交易?隐私?
微店的大数据平台建设实践与探讨
阿里巴巴PPT:大数据基础建议及产品应用之道
基于社会媒体的预测技术
人工智能简史
技巧:演讲中怎样用数据说话
马云和小贝选谁做老公?写给非数据人的数据世界入门指南
掘金大数据产业链:上游资源+中游技术+下游应用
原创教程:手把手教你用Excel做多层折线图
销售分析:如何从数据指标发现背后的故事
如何一步步从数据产品菜鸟走到骨干数据产品
也来谈谈微博的用户画像
行走在网格之间:微博用户关系模型
如何拍出和明星一样美爆的自拍照?斯坦福大学用卷积神经网络建模告诉你
运营商如何玩转大数据? 浙江移动云计算和大数据实践(PPT附下载)
大数据分析的集中化之路 建设银行大数据应用实践PPT
腾讯防刷负责人:基于用户画像大数据的电商防刷架构
创业提案的逻辑
友盟分享 | 移动大数据平台架构思想以及实践经验
寻路推荐 豆瓣推荐系统实践之路
“小数据”的统计学
重磅!8大策略让你对抗机器学习数据集里的不均衡数据
小团队撬动大数据——当当推荐团队的机器学习实践
微博推荐架构的演进
科普文 手把手教你微信公众号数据分析
信息图制作的六个注意点
【权利的游戏】剧透新玩法:情理之中?意料之外
推荐系统(Recommender System)的技术基础
核心算法 谷歌如何从网络的大海里捞到针
Quora数据科学家和机器学习工程师是如何合作的
阿里巴巴PPT:大数据下的数据安全
数据建模那点事儿
全民拥抱Docker云–Lhotse系统经验分享
实时股票分析系统的架构与算法
架构师必看 京东咚咚架构演进
什么叫对数据敏感?怎样做数据分析?
推荐系统基础知识储备
刘德寰:数据科学的整合与细分 数据科学的七个危险趋势(视频)
实际工作中,如何做简单的数据分析?
分布式前置机器学习在威胁情报中的应用(附PPT下载)
数据科学 怎样进行大数据的入门级学习?
扛住100亿次请求 如何做一个“有把握”的春晚红包系统?(PPT下载)
从 LinkedIn 的数据处理机制学习数据架构
大数据会如何改变管理咨询公司(I)
优秀大数据GitHub项目一览
生硬的数字和数据新闻:这么近,那么远
经典大数据架构案例:酷狗音乐的大数据平台重构(长文)
揭秘中兴大数据在银行领域的系统部署
基于大数据的用户画像构建(理论篇)
【R】支持向量机模型实现
数据图处处有陷阱?五个例子教你辨真伪
如何用R绘制地图
你确定你真的懂用户画像?
数据模型需要多少训练数据?
【接地气】01 数据报表的颜色怎么配
游戏价值和数据分析新思路
【R】异常值检测
快的打车架构实践
豆瓣还是朋友圈:大数据、新方法和日常问
PPT数据图表,怎么做才好看?
大道至简的数据体系构建方法论
数据的误区及自身业务
新浪微博的用户画像是怎样构建的?
面试干货!21个必知数据科学面试题和答案part1(1-11)
易观智库:中国大数据产业生态图谱2016(附下载)
Airbnb的数据基础架构
50PB海量数据排序,谷歌是这么做的
大数据时代工程师如何应对–今日头条走进硅谷技术讲座
D3.js教学记(下)
D3.js教学记(上)
飞林沙:企业级服务公司如何赚钱?只有平台级产品才有大数据的理论
一个母婴电子商务网站的大数据平台及机器学习实践
7大板块 组成数据分析师的完整知识结构
干货:SaaS领域如何分析收入增长?
学术 | 词嵌入的类比特性有实用意义吗?
6个用好大数据的秘诀
一个数据库外行眼中的微信优化 (附专家补充)
大数据调研,如何实现快全准?
数据大师Olivier Grisel给志向高远的数据科学家的指引
数据堂肖永红:数据交易的是使用权或数据的增值,而不是数据本身(PPT附下载)
淘宝商品详情平台化思考与实践
刘译璟:百分点大数据理念和实践(图文+PPT下载)
如何快速搞定一份看起来还不错的演示文档?
【BABY夜谈大数据】决策树
数据驱动设计:数据处理流程、分析方法和实战案例
美图数据总监:Facebook的法宝,我们在产品中怎么用?
树的内核:量化树结构化数据之间的相似性
拿到用户数据之后,LinkedIn怎么赚钱?
GrowingIO张溪梦:增长黑客的核心 企业应该重视产品留存率(附PPT下载)
[译]Airbnb是如何使用数据理解用户旅行体验的?
微博推荐数据服务代理: hyper_proxy的设计和实现
星图数据谷熠:消费领域DaaS 大数据重构未来商业游戏规则(附PPT下载)
鲍忠铁:TalkingData大数据技术与应用实践(PPT下载)
【干货教材】数据分析VS业务分析需求
九枝兰专访:数字营销的核心—企业如何使用数据管理平台(DMP)进行精准营销
我们的应用系统是如何支撑千万级别用户的
R应用空间数据科学
Excel进行高级数据分析(上)
Excel进行高级数据分析(下)
国内各大互联网公司2.0版技术站点收集
网站数据分析思路导图
大数据分析报表设计开发要素
大数据需要的12个工具 推荐
YARN/MRv2 Resource Manager深入剖析—NM管理
YARN/MRv2 Resource Manager深入剖析—RMApp状态机分析
Hadoop 1.0与Hadoop 2.0资源管理方案对比
Hadoop 2.0中单点故障解决方案总结
Hadoop 2.0 (YARN)中的安全机制概述
Hadoop 新特性、改进、优化和Bug分析系列1:YARN-378
Hadoop 新特性、改进、优化和Bug分析系列2:YARN-45
Hadoop 新特性、改进、优化和Bug分析系列3:YARN-392
Hadoop版本选择探讨
探究提高Hadoop稳定性与性能的方法
《Effective C++》读书笔记(第一部分)
Hadoop分布式环境下的数据抽样
Hadoop计算能力调度器算法解析
如何编写Hadoop调度器
数据结构之红黑树
Hadoop pipes设计原理
《C++ Primer plus》学习笔记之”类”
《C++ Primer plus》学习笔记之”类继承”
《C++ Primer plus》学习笔记之”C++中的代码重用”
《C++ Primer plus》学习笔记之”异常”
《C++ Primer plus》学习笔记之”RTTI”
Hadoop pipes编程
Hadoop Streaming高级编程
《C++ Primer plus》学习笔记之”标准模板库”
《C++ Primer plus》学习笔记之”输入输出库”
Linux Shell 命令总结
算法之图搜索算法(一)
awk使用总结
素数判定算法
《C++ Primer plus》学习笔记之“函数探幽”
使用Thrift RPC编写程序
如何在Hadoop上编写MapReduce程序
怎样从10亿查询词找出出现频率最高的10个

50篇干货:淘宝店/电子商务如何玩转数据分析?

于2017-04-01由小牛君创建

分享到:


大数据培训,就上小牛学堂

随着中国新一轮的生育高峰期到来,母婴零售店遍地开花,市场竞争趋向白热化。目前越来越多的母婴零售店都采用了会员制度,并以“会员专享优惠”、“多倍积分”、“积分兑换奖品”等优惠方式吸引大批新的消费者留下个人手机号码、宝宝性别、宝宝月龄、家庭地址等相关信息。

今日之电商诸侯争霸,可谓火药味甚浓,更推进着产业前进步伐。古语有云:长袖善舞,多钱善贾,意指有所依靠,事情容易成功。

移动电商正以前所未有的速度在发展,如何通过数据的挖掘和分析,区别移动电商和传统电商、实体零售店的用户行为差异,并进行针对性营销,格外重要。

他不认认为用户迫切的需要另一个品牌,但是如果有人能够采用创新性的方法,进行产品的设计和广告,那还是有成功的机会的。

大数据时代,电子商务面临新的挑战。从电商站点设计,移动搜索,社交媒体,转化率,停留率等方面来解读大数据时代欧美电商的关键数据。

转化率这东西没有类目比照性,只要同行比照性。我们要在同行里面做到转化率高于大局部同行其实就能够了。

(1)营业额;(2)分类货品销售额;(3)前十大畅销款;(4)前十大滞销款;(5)连带率(销售件数/销售单数);(6)坪效(每天每平米的销售额);(7)人效(每天每人的销售额);(8)客单价(销售额/销售单数);(9)货品流失率(货品流失率=缺失货品吊牌价÷期间销售额×100%);(10)存销比(存销比=库存件数÷月销售件数);(11)VIP占比(VIP消费额/营业额);(12)销售折扣(营业额/销售吊牌金额)

阿里不只是在与腾讯拼移动,它的电商本土业务也在稳步推进。最近一个里程碑事件是,阿里包下了美的、九阳、苏泊尔等十个品牌的12条生产线,专为天猫特供小家电。阿里通过所掌握的数据以及分析成果,去指导这些生产线的研发、设计、生产、定价。

数据对比主要是横向和纵向两个角度,指标间的横向对比帮助我们认识预期值的合理性,而指标自身在时间维度上的对比,即我们通常说的趋势分析。

余额宝其实是天弘基金旗下的一只货币市场基金——增利宝,该基金成立于2013年5月29日,那么在成立的2013年内余额宝表现如何呢?

针对以往销售数据,结合地区行业的发展状况,通过对营业额的每天定期跟进,每周总结比较,以此来调整促销及推广活动。

数据营销的核心就是基于用户数据对用户进行针对性营销。基于数据库的营销一般分几种类型:注册的未产生购物车、产生购物车未生成订单、生成订单未付款、无第二次购买、无重复购买、收藏夹用户。

日前,淘宝公布了人口迁徙数据,正是利用大数据技术的普及,普通人才能窥探出哪些城市是用工的热门城市,同乡都喜欢去哪些城市工作。

1.做好流量基础才是关键,让店铺有一定的数据基础,便于后期分析。2.对客户进行全面体检式分析,不放过任何价值点。3.对转化率,点击率等数据要有基础认知,且能通过分析得知问题所在。

提到电子商务,自然会联想到大数据,如今“大数据”频繁地出现在媒体上,通过大数据,商家可以收集和分析数据,了解客户的购物模式和消费体验,从而改进产品设计,调整电子商务策略。

大数据被认为可以解决企业的重大问题。它确实可以。只是有些时候其目标会……比崇高要更加的身体丰满。这就是在线内衣商店True&Co所发现的,因为它对其客户运用了大规模的数据分析以完善在线的胸罩尺寸测量。

通常来说,数据采集有两种方式,第一种是利用网络问卷调研的方式,获得用户心理和行为习惯层面的定量数据;第二种是在产品页面设置模块、图片、文字等埋点的方式,收集页面数据。

电商和传统商家的最大区别在于,电商构建的各类型数据库可以轻而易举地记录全部用户的各类访问数据,快速捕获、实时监控、精准分析,实现数字化生产和管理。

为提高在主营产品上的赢利,亚马逊在2000年9月中旬开始了著名的差别定价实验。亚马逊选择了68种DVD碟片进行动态定价试验,试验当中,亚马逊根据潜在客户的人口统计资料、在亚马逊的购物历史、上网行为以及上网使用的软件系统确定对这68种碟片的报价水平。

“电子商务聚集着庞大数量的消费者,网络化的手段能让很多消费环节变得更加便捷、透明,保险消费当然也能分享这些优势。”淘宝保险总经理姜兴在接受公开媒体采访时表示,以淘宝为代表的电商平台的发展让老百姓可以通过互联网更加便捷地获得各种保险的保障,“赏月险”就是一个很有意思的尝试。

电商界有种说法,说传统企业的电商缺乏电子基因,而电商新贵缺乏商业基因,从数据分析观察来看,就是一个缺乏有效引流、流量转换、网站粘客等产品和运营手段,而另一个缺乏成本费用控制的有效手段,让快速增长沉淀下来。

做电商,看懂数据是基本功。软件可以解决繁琐的计算,但解读还需要运营人员有基本的数据分析能力。本文作者列举了五个常见的数据陷阱,了解和掌握后可以有效避免一些分析结果的偏差,从而帮助管理者做出正确的决策。

网购的人越来越多,将网上的橱窗购物者转化成实际顾客则变得极其困难。传统的电子商务转化率出奇的低,但一家名为Granify的初创公司相信,它能够利用大数据挽留本来准备离开的潜在顾客,甚至能够说服他们下单购买,从而提高电商的转换率。

在研究挖掘关联规则的过程中,许多学者发现在实际应用中,对于很多应用来说,由于数据分布的分散性,数据比较少,所以很难在数据最细节的层次上发现一些强关联规则。

所谓关联,反映的是一个事件和其他事件之间依赖或关联的知识。当我们查找英文文献的时候,可以发现有两个英文词都能形容关联的含义。

作者总结了七句话:销售是目标、毛利是根本、商品为核心、供应牢把控、行为是金矿、新品是未来、订单是纽带。理解这七句话,并付诸实践,将每句话都拆解成具体的监控指标,让类目运营人员和老板做到随时随地心中有数。

在理解了要选择怎样的指标来衡量各项业务之后,我们可以对业务有一个客观和全面的把握,可是数字本身无法告诉我们发生了什么事情,怎样可以改进。

淘宝和新浪微博太讨厌了——没必要我前几天从淘宝网上买了一次牛肉干,你就天天在新浪微博页面上推荐牛肉干、鱿鱼丝之类的。我一次就吃腻了,至今还在反胃哩。你能追踪我的消费痕迹,却体会不了我的消费感受。淘宝和新浪微博,你们如果能区分我贪婪的口水和反胃的嗝之间的区别,那才真叫本事!

对平台上的卖家来说,如何给宝贝取标题、选择关键词投放对于获取站内站外的搜索流量来说都至关重要,而对于独立B2C来说,在显示搜索结果时,除了根据商品关键词进行匹配外,还可以向用户主动推荐关联商品。

大数据市场前景广阔。市场研究公司MarketsandMarkets最新发布的一份报告预计,从2013年到2018年,全球大数据市场将会出现年均26%的增长率,即从今年的148.7亿美元增长到2018年的463.4亿美元。

洞察消费者全部的行为,是商业社会一直以来的梦想。今天,这个梦想似乎不再遥不可及,因为我们手中已握有最重要的拼图,它就是数据。从电子商务诞生之日起,数据就是区别于传统商业的利器,因而不夸张地说,数据的挖掘和应用是电商的竞争力,更是使命。

当你在不同的地方测试新闻订阅、下载链接或注册会员,你可以使用不同的链接的名称、订阅的方式、广告的放置、付费搜索链接、付费广告(PPC)等等,看看那种方式是能够保持转换率在上升?如何增强来访者和网站内容的相关性?如果这个值上升,说明相关性增强了,反之,则是减弱。

利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员流失;利用会员的购买数据,挖掘会员的潜在需求,提供销售,扩大影响力等等。

要想在如今的电商大战中存活下来,每个创业者都需要做好每一件事情,从最基本的搜索引擎优化(SEO)到移动广告。而一些分析工具能够帮助你更好的了解企业的运营情况。

随着互联网和信息行业的兴起,大数据的价值越来越具像化。对于企业来说,大数据可以了解客户需求、进行基础研究、支撑产品结构调整以及提高服务水平等等。

如果两项或多项属性之间存在关联,那么其中一项的属性值就可以依据其他属性值进行预测。简单地来说,关联规则可以用这样的方式来表示:A→B,其中A被称为前提或者左部(LHS),而B被称为结果或者右部(RHS)。

前一阵原INSEAD教授曾鸣在公司的内部交流中说到,公司发展都会经历三个阶段,第一个阶段是认清自己的方向,但是不完全知道路怎么走;第二个阶段是知道路上有些步子是对的,有些步子是错的,渐渐去掉错误的,集中精力坚持做正确的;第三个阶段是全力争取高速增长。世上没有一家永远高速增长的公司,一个生命长的公司是在这三阶段里不断轮回。

如今,经营一家交易型的外贸电子商务网站已经成为许多出口企业看好的新销售形态,企业对此有很大的尝试热情。

分享线上活动成效、考核相关人员绩效(KPI)、监控推广的投入产出(ROI)、发现客服、营销等方面的问题、预测市场未来趋势、帮助改进网站UED。

当时电子商务行业的营销活动主要集中在搜索引擎上,但是1号店的营销非常差,在百度和谷歌每花一块钱带来的销售额不到一块钱,也就是说花一块钱的广告和营销成本,带来的盈利还不到一块钱。

从用研的角度来看,交互设计包括新产品设计以及已有产品的改版设计两大类业务,笔者将分两次分别叙述在这两大类业务中,可以如何利用数据了解用户需求。

据悉每年因网购不合适导致退换货损失近112亿美元,如此催生了虚拟试衣服务,消费者只需输入身体尺寸就能根据过往数据推荐合适的衣服尺码,虚拟试衣积累海量消费者身体数据和用户的穿衣风格喜好,是大数据下精准营销的关键…国外虚拟试衣场景。

电子商务CRM不是一个软件系统,它是一种客户导向的运营战略,这个战略的核心是客户资料。围绕客户资料的所有有用信息就是客户数据。这个系列的文章涵盖所有电子商务的业态,倒是不妨先看看不同的电商业态,面对的客户是怎样的。

如何把情感融入到消费者的体验中,使电子商务平台变成一个有趣的地方?记住:消费者不仅想在这里买东西,还想在这里获得更愉悦的人生体验,电子商务平台需要与消费者建立起超越一般产品的情感联系,才能使双方的交互更加引人入胜。

近期越来越多的朋友抱怨说店铺生意急转直下,求诊断、求分析。其实我能做的也微乎其微,只能从对方截图告诉我的一系列的数据指标中望闻问切,提供参考意见。 End.