阿里巴巴菜鸟级数据产品经理半年回顾总结篇
干货教程:如何绘制业务流程图(二)
干货教程:如何绘制业务流程图(一)
技术贴:如何在数据库中秘密地查询隐私数据
攻略教程:信息图(infographic)是怎么做出来的?
分析师一定要看!用数据讲故事的五个步骤
技术篇:怎样玩转千万级别的数据?
北漂书生:大数据时代SEO数据如何搜集和分析
干货,从十大问题重新认识并读懂互联网
相似图片搜索、算法、识别的原理解析(下)
相似图片搜索、算法、识别的原理解析(上)
制作信息图时请遵循这10条原则
提高表格可读性的一些技巧,适用于Excel、PPT等数据报表
实用教程:如何让Excel图表更具“商务气质”?
一张数据信息图是这样制作完成的
菜鸟读财报,如何从上市公司财报中挖情报?
北大数据分析老鸟写给学弟们一封信
如何一步一步制作出高品质数据信息图?
总结:海量数据分析处理的十个方法
【实战经验】数据分析师如何了解老板真正想法?
零售业数据分析那些事儿
数据分析时l常用电子表格公式【大全】
用数据来告诉你 上市公司财报的秘密
这12个数据能 帮你搞定淘宝店铺
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(四)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(三)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(二)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(一)
淘宝网店从激活到挽留,4步走玩转数据营销
文案怎样写才有意思、不空洞、打动人?
入门级扫盲贴:数据分析的步骤有哪些?
关系即数据,论社交媒体的关系转换
数据的力量,苹果教你用数据鄙视竞争对手
谁说文科生不能做数据分析?数据分析入行→技能提升→优势
产品运营数据分析——SPSS数据分组案例
如何追踪iPhone和iPad等移动设备的用户行为数据?
阿里巴巴中国站:用户满意度指标权重计算方法
广告中的AdNetwork、AdExchange、DSP、SSP、RTB和DMP是什么?
信息图制作教程:关于数值的表现
为什么大数据会如此轰动?(值得深度的文章)
多图技术贴:深入浅出解析大数据平台架构
面板数据分析中标准误的估计修正——根据Peterson (2009)的归纳
财务官、投资人、CIO看过来:给企业数据定价
推荐系统中常用算法 以及优点缺点对比
探索Weotta搜索引擎背后的大数据技术
如何识别虚假数据?
为什么我们像驯化小狗那样驯化算法
程序员必须知道的10大基础实用算法及其讲解
电子商务:最影响转化率的九大要素
如何迅速成为一名数据分析师?
想从事大数据、海量数据处理相关的工作,如何自学打基础?
如何用亚马逊弹性MapReduce分析大数据?
译文:机器学习算法基础知识
给hadoop新手的一封信:Hadoop入门自学及对就业的帮助
从入门到精通,我是这样学习算法的
小商家,从老客户身上获取的数据才更有意义
13页PPT讲述:大数据下网站数据分析应用
40页PPT详解:京东大数据基础构架与创新应用
67页PPT解密搜索引擎背后的大技术:知识图谱,大数据语义链接的基石
营销洞察力——10个营销度量指标
技术篇:前端数据之美如何展示?
董飞:美国大数据工程师面试攻略【PPT】
easel:如何制作好的信息图——来自专家的顶级技巧
大数据实操:以3D打印机为例,如何知道卖点有没有市场需求?
大数据建模 需要了解的九大形式
用户画像数据建模方法
从规划开始,公司or企业如何入手和实施大数据?
干货:商品信息数据分析和展现系统的设计与开发
高手教你用Excel制作百度迁徙数据地图
50篇干货:淘宝店/电子商务如何玩转数据分析?
精华索引:大数据实际应用案例50篇
验证最小化可行产品 (MVP) 的 15 种方法
干货:数据分析师的完整知识结构
大数据技术Hadoop面试题,看看你能答对多少?答案在后面
用SPSS做数据分析?先弄懂SPSS的基础知识吧
怎样做出优秀的扁平化设计风格PPT? 扁平化PPT设计手册#3
解答│做大数据过程中遇到的13个问题
40页PPT│社交网络发展的新动力:大数据与众包
以Amazon、豆瓣网为例,探索推荐引擎内部的秘密#1
怎样做出优秀的扁平化设计风格PPT?#2
怎样做出优秀的扁平化设计风格PPT?#1
36页PPT│大数据分析关键技术在腾讯的应用服务创新
如何丰满地做SWOT分析?
【35页PPT】TalkingData研发副总阎志涛:移动互联网大数据处理系统架构
27页PPT|以珍爱网为例,如何构建有业务价值的数据分析系统?
国外数据新闻资源分享
21页PPT重磅发布:Mariana——腾讯深度学习平台的进展与应用
从0到100——知乎架构变迁史
PPT解读:百度大数据质量保障方案探索
45页PPT|大数据环境下实现一个O2O通用推荐引擎的实践
从数据看豆瓣兴衰
深度学习系列:解密最接近人脑的智能学习机器——深度学习及并行化实现(四)
重磅推荐:129页PPT讲述移动时代创业黄金法则 via:腾讯企鹅智酷
重磅推荐:大数据工程师飞林沙的年终总结&算法数据的思考
OpenKN——网络大数据时代的知识计算引擎
大数据下城市计算的典型应用
技术贴:大数据告诉你,如何给微信公众号文章取标题?
你的QQ暴露了你的心——QQ大数据及其应用介绍PPT
如何从企业报表看企业的生存能力?
实用的大数据技巧合集
技术帝揭秘:充电宝是如何盗取你的个人隐私的?
重磅!50页PPT揭秘腾讯大数据平台与推荐应用架构
原创教程:饼图之复合饼图与双层饼图(1)
PPT:大数据时代的设计特点——不了解这个你做不了今天的设计
教程贴:如何用方程式写春联?
原创教程:如何用Excel制作简易动态对比图
深度译文:机器学习那些事
教程帖:数学之美——手把手教你用Excel画心(动态图)
董老师走进斯坦福,聊聊硅谷创业公司和大数据的事儿(附课件PPT下载)
【限时】年度钜献,108个大数据文档PDF开放下载
董飞专栏:大数据入门——大数据相关技术、Hadoop生态、LinkedIn内部实战
亿级用户下的新浪微博平台架构
一张图了解磁盘里的数据结构
浅析数据化设计思维在阿里系产品的应用
美团推荐算法实践
一个P2P创业公司有哪些部门,都是做什么的?
一个P2P平台的详细运营框架是怎样的?
机器学习中的算法——决策树模型组合之随机森林与GBDT
神经网络简史
58页PPT看懂互联网趋势,大数据/物联网/云计算/4G都有了
广点通背后的大数据技术秘密——大规模主题模型建模及其在腾讯业务中的应用(附PPT)
微信红包之CBA实践PPT——移动互联网海量访问系统设计
一文读懂机器学习,大数据/自然语言处理/算法全有了……
搜狐新闻客户端的背后大数据技术原理——推荐系统(PPT)
原创教程:用Excel做动态双层饼图
半小时读懂PMP私有广告交易市场
怎样分析样本调研数据(译)
PPT:支付宝背后的大数据技术——DataLab、Higo的实践及应用
大数据技术人员的工具包——开源大数据处理工具list(限时下载)
计算机视觉:随机森林算法在人体识别中的应用
24页PPT:机器学习——支持向量机SVM简介(附下载)
互联网高手教你如何搜集你想要的信息
深度:对地观测大数据处理、挑战与思考
原创教程:用Excel做饼图之复合饼图与双层饼图(2)
移动大数据时代: 无线网络的挑战与机遇(附pdf下载)
Excel使用技巧——25招必学秘技
【年度热门】加上这些 Excel 技能点,秒杀众人(多图)
原创教程:用Excel做纵向折线图
知识图谱——机器大脑中的知识库
何明科专栏:用数据化的方式解析投资条款
DT时代,如何用大数据分析创造商业价值(23页PPT)
MIT牛人梳理脉络详解宏伟现代数据体系
你的老婆是怎么算出来的?揭秘佳缘用户推荐系统
飞林沙:商品推荐算法&推荐解释
PPT:如何成为真正的数据架构师?(附下载)
开源大数据查询分析引擎现状
董飞专栏:打造数据产品必知秘籍
译文:如何做强大又漂亮的信息图
如何使用Amazon Machine Learning构建机器学习预测模型
如何运用数据协助货架管理(内附26张PPT)
SVM算法
主流大数据系统在后台的层次角色及数据流向
PPT:阿里全息大数据构建与应用
人脸识别技术大总结——Face Detection & Alignment
教程:用Excel制作成对条形图
易观智库:大数据下的用户分析及用户画像(18页PPT附下载)
技术向:如何设计企业级大数据分析平台?
电商数据分析基础指标体系
IBM SPSS Modeler 决策树之银行行销预测应用分析
拓扑数据分析与机器学习的相互促进
基于 R 语言和 SPSS 的决策树算法介绍及应用
用php做爬虫 百万级别知乎用户数据爬取与分析
另类新浪微博基本数据采集方法
以10万+阅读的文章为例 教你做微信公众号的运营数据分析
破解数据三大难题:变现?交易?隐私?
微店的大数据平台建设实践与探讨
阿里巴巴PPT:大数据基础建议及产品应用之道
基于社会媒体的预测技术
人工智能简史
技巧:演讲中怎样用数据说话
马云和小贝选谁做老公?写给非数据人的数据世界入门指南
掘金大数据产业链:上游资源+中游技术+下游应用
原创教程:手把手教你用Excel做多层折线图
销售分析:如何从数据指标发现背后的故事
如何一步步从数据产品菜鸟走到骨干数据产品
也来谈谈微博的用户画像
行走在网格之间:微博用户关系模型
如何拍出和明星一样美爆的自拍照?斯坦福大学用卷积神经网络建模告诉你
运营商如何玩转大数据? 浙江移动云计算和大数据实践(PPT附下载)
大数据分析的集中化之路 建设银行大数据应用实践PPT
腾讯防刷负责人:基于用户画像大数据的电商防刷架构
创业提案的逻辑
友盟分享 | 移动大数据平台架构思想以及实践经验
寻路推荐 豆瓣推荐系统实践之路
“小数据”的统计学
重磅!8大策略让你对抗机器学习数据集里的不均衡数据
小团队撬动大数据——当当推荐团队的机器学习实践
微博推荐架构的演进
科普文 手把手教你微信公众号数据分析
信息图制作的六个注意点
【权利的游戏】剧透新玩法:情理之中?意料之外
推荐系统(Recommender System)的技术基础
核心算法 谷歌如何从网络的大海里捞到针
Quora数据科学家和机器学习工程师是如何合作的
阿里巴巴PPT:大数据下的数据安全
数据建模那点事儿
全民拥抱Docker云–Lhotse系统经验分享
实时股票分析系统的架构与算法
架构师必看 京东咚咚架构演进
什么叫对数据敏感?怎样做数据分析?
推荐系统基础知识储备
刘德寰:数据科学的整合与细分 数据科学的七个危险趋势(视频)
实际工作中,如何做简单的数据分析?
分布式前置机器学习在威胁情报中的应用(附PPT下载)
数据科学 怎样进行大数据的入门级学习?
扛住100亿次请求 如何做一个“有把握”的春晚红包系统?(PPT下载)
从 LinkedIn 的数据处理机制学习数据架构
大数据会如何改变管理咨询公司(I)
优秀大数据GitHub项目一览
生硬的数字和数据新闻:这么近,那么远
经典大数据架构案例:酷狗音乐的大数据平台重构(长文)
揭秘中兴大数据在银行领域的系统部署
基于大数据的用户画像构建(理论篇)
【R】支持向量机模型实现
数据图处处有陷阱?五个例子教你辨真伪
如何用R绘制地图
你确定你真的懂用户画像?
数据模型需要多少训练数据?
【接地气】01 数据报表的颜色怎么配
游戏价值和数据分析新思路
【R】异常值检测
快的打车架构实践
豆瓣还是朋友圈:大数据、新方法和日常问
PPT数据图表,怎么做才好看?
大道至简的数据体系构建方法论
数据的误区及自身业务
新浪微博的用户画像是怎样构建的?
面试干货!21个必知数据科学面试题和答案part1(1-11)
易观智库:中国大数据产业生态图谱2016(附下载)
Airbnb的数据基础架构
50PB海量数据排序,谷歌是这么做的
大数据时代工程师如何应对–今日头条走进硅谷技术讲座
D3.js教学记(下)
D3.js教学记(上)
飞林沙:企业级服务公司如何赚钱?只有平台级产品才有大数据的理论
一个母婴电子商务网站的大数据平台及机器学习实践
7大板块 组成数据分析师的完整知识结构
干货:SaaS领域如何分析收入增长?
学术 | 词嵌入的类比特性有实用意义吗?
6个用好大数据的秘诀
一个数据库外行眼中的微信优化 (附专家补充)
大数据调研,如何实现快全准?
数据大师Olivier Grisel给志向高远的数据科学家的指引
数据堂肖永红:数据交易的是使用权或数据的增值,而不是数据本身(PPT附下载)
淘宝商品详情平台化思考与实践
刘译璟:百分点大数据理念和实践(图文+PPT下载)
如何快速搞定一份看起来还不错的演示文档?
【BABY夜谈大数据】决策树
数据驱动设计:数据处理流程、分析方法和实战案例
美图数据总监:Facebook的法宝,我们在产品中怎么用?
树的内核:量化树结构化数据之间的相似性
拿到用户数据之后,LinkedIn怎么赚钱?
GrowingIO张溪梦:增长黑客的核心 企业应该重视产品留存率(附PPT下载)
[译]Airbnb是如何使用数据理解用户旅行体验的?
微博推荐数据服务代理: hyper_proxy的设计和实现
星图数据谷熠:消费领域DaaS 大数据重构未来商业游戏规则(附PPT下载)
鲍忠铁:TalkingData大数据技术与应用实践(PPT下载)
【干货教材】数据分析VS业务分析需求
九枝兰专访:数字营销的核心—企业如何使用数据管理平台(DMP)进行精准营销
我们的应用系统是如何支撑千万级别用户的
R应用空间数据科学
Excel进行高级数据分析(上)
Excel进行高级数据分析(下)
国内各大互联网公司2.0版技术站点收集
网站数据分析思路导图
大数据分析报表设计开发要素
大数据需要的12个工具 推荐
YARN/MRv2 Resource Manager深入剖析—NM管理
YARN/MRv2 Resource Manager深入剖析—RMApp状态机分析
Hadoop 1.0与Hadoop 2.0资源管理方案对比
Hadoop 2.0中单点故障解决方案总结
Hadoop 2.0 (YARN)中的安全机制概述
Hadoop 新特性、改进、优化和Bug分析系列1:YARN-378
Hadoop 新特性、改进、优化和Bug分析系列2:YARN-45
Hadoop 新特性、改进、优化和Bug分析系列3:YARN-392
Hadoop版本选择探讨
探究提高Hadoop稳定性与性能的方法
《Effective C++》读书笔记(第一部分)
Hadoop分布式环境下的数据抽样
Hadoop计算能力调度器算法解析
如何编写Hadoop调度器
数据结构之红黑树
Hadoop pipes设计原理
《C++ Primer plus》学习笔记之”类”
《C++ Primer plus》学习笔记之”类继承”
《C++ Primer plus》学习笔记之”C++中的代码重用”
《C++ Primer plus》学习笔记之”异常”
《C++ Primer plus》学习笔记之”RTTI”
Hadoop pipes编程
Hadoop Streaming高级编程
《C++ Primer plus》学习笔记之”标准模板库”
《C++ Primer plus》学习笔记之”输入输出库”
Linux Shell 命令总结
算法之图搜索算法(一)
awk使用总结
素数判定算法
《C++ Primer plus》学习笔记之“函数探幽”
使用Thrift RPC编写程序
如何在Hadoop上编写MapReduce程序
怎样从10亿查询词找出出现频率最高的10个

大数据技术Hadoop面试题,看看你能答对多少?答案在后面

于2017-04-01由小牛君创建

分享到:


大数据

单项选择题

1. 下面哪个程序负责 HDFS 数据存储。

a)NameNode
b)Jobtracker
c)Datanode
d)secondaryNameNode
e)tasktracker

2. HDfS 中的 block 默认保存几份?

a)3 份
b)2 份
c)1 份
d)不确定

3. 下列哪个程序通常与 NameNode 在一个节点启动?

a)SecondaryNameNode
b)DataNode
c)TaskTracker
d)Jobtracker

4. Hadoop 作者

a)Martin Fowler
b)Kent Beck
c)Doug cutting

5. HDFS 默认 Block Size

a)32MB
b)64MB
c)128MB

6. 下列哪项通常是集群的最主要瓶颈

a)CPU
b)网络
c)磁盘
d)内存

7. 关于 SecondaryNameNode 哪项是正确的?

a)它是 NameNode 的热备
b)它对内存没有要求
c)它的目的是帮助 NameNode 合并编辑日志,减少 NameNode 启动时间
d)SecondaryNameNode 应与 NameNode 部署到一个节点

多选题:

8. 下列哪项可以作为集群的管理工具

a)Puppet
b)Pdsh
c)Cloudera Manager
d)d)Zookeeper

9. 配置机架感知的下面哪项正确

a)如果一个机架出问题,不会影响数据读写
b)写入数据的时候会写到不同机架的 DataNode 中
c)MapReduce 会根据机架获取离自己比较近的网络数据

10. Client 端上传文件的时候下列哪项正确

a)数据经过 NameNode 传递给 DataNode
b)Client 端将文件切分为 Block,依次上传
c)Client 只上传数据到一台 DataNode,然后由 NameNode 负责 Block 复制工作

11. 下列哪个是 Hadoop 运行的模式

a)单机版
b)伪分布式
c)分布式

12. Cloudera 提供哪几种安装 CDH 的方法

a)Cloudera manager
b)Tar ball
c)Yum d)Rpm

判断题:

13. Ganglia 不仅可以进行监控,也可以进行告警。( )

14. Block Size 是不可以修改的。( )

15. Nagios 不可以监控 Hadoop 集群,因为它不提供 Hadoop 支持。( )

16. 如果 NameNode 意外终止,SecondaryNameNode 会接替它使集群继续工作。( )

17. Cloudera CDH 是需要付费使用的。( )

18. Hadoop 是 Java 开发的,所以 MapReduce 只支持 Java 语言编写。( )

19. Hadoop 支持数据的随机读写。( )

20. NameNode 负责管理 metadata,client 端每次读写请求,它都会从磁盘中读取或则会写入 metadata 信息并反馈 client 端。( )

21. NameNode 本地磁盘保存了 Block 的位置信息。( )

22. DataNode 通过长连接与 NameNode 保持通信。( )

23. Hadoop 自身具有严格的权限管理和安全措施保障集群正常运行。( )

24. Slave 节点要存储数据,所以它的磁盘越大越好。( )

25. hadoop dfsadmin –report 命令用于检测 HDFS 损坏块。( )

26. Hadoop 默认调度器策略为 FIFO( )

27. 集群内每个节点都应该配 RAID,这样避免单磁盘损坏,影响整个节点运行。( )

28. 因为 HDFS 有多个副本,所以 NameNode 是不存在单点问题的。( )

29. 每个 map 槽就是一个线程。( )

30. Mapreduce 的 input split 就是一个 block。( )

31. NameNode 的 Web UI 端口是 50030,它通过 jetty 启动的 Web 服务。( )

32. Hadoop 环境变量中的 HADOOP_HEAPSIZE 用于设置所有 Hadoop 守护线程的内存。它默认是 200 GB。( )

33. DataNode 首次加入 cluster 的时候,如果 log 中报告不兼容文件版本,那需要 NameNode执行“Hadoop namenode -format”操作格式化磁盘。( )

别走开,答案在后面哦!

大数据

1. 下面哪个程序负责 HDFS 数据存储。答案C datanode

a)NameNode
b)Jobtracker
c)Datanode
d)secondaryNameNode
e)tasktracker

2. HDfS 中的 block 默认保存几份? 答案A默认3分

a)3 份
b)2 份
c)1 份
d)不确定

3. 下列哪个程序通常与 NameNode 在一个节点启动?答案D

a)SecondaryNameNode
b)DataNode
c)TaskTracker
d)Jobtracker

此题分析:

hadoop的集群是基于master/slave模式,namenode和jobtracker属于master,datanode和tasktracker属于slave,master只有一个,而slave有多个SecondaryNameNode内存需求和NameNode在一个数量级上,所以通常secondary NameNode(运行在单独的物理机器上)和NameNode运行在不同的机器上。

JobTracker和TaskTracker

JobTracker 对应于 NameNode

TaskTracker 对应于 DataNode

DataNode 和NameNode 是针对数据存放来而言的

JobTracker和TaskTracker是对于MapReduce执行而言的

mapreduce中几个主要概念,mapreduce整体上可以分为这么几条执行线索:obclient,JobTracker与TaskTracker。

1、JobClient会在用户端通过JobClient类将应用已经配置参数打包成jar文件存储到hdfs,并把路径提交到Jobtracker,然后由JobTracker创建每一个Task(即MapTask和ReduceTask)并将它们分发到各个TaskTracker服务中去执行。

2、JobTracker是一个master服务,软件启动之后JobTracker接收Job,负责调度Job的每一个子任务task运行于TaskTracker上,并监控它们,如果发现有失败的task就重新运行它。一般情况应该把JobTracker部署在单独的机器上。

3、TaskTracker是运行在多个节点上的slaver服务。TaskTracker主动与JobTracker通信,接收作业,并负责直接执行每一个任务。TaskTracker都需要运行在HDFS的DataNode上。

4. Hadoop 作者 答案C Doug cutting

a)Martin Fowler
b)Kent Beck
c)Doug cutting

5. HDFS 默认 Block Size 答案:B

a)32MB
b)64MB
c)128MB

(因为版本更换较快,这里答案只供参考)

6. 下列哪项通常是集群的最主要瓶颈:答案:C磁盘

a)CPU
b)网络
c)磁盘IO
d)内存

该题解析:

首先集群的目的是为了节省成本,用廉价的pc机,取代小型机及大型机。小型机和大型机有什么特点?

1.cpu处理能力强

2.内存够大

所以集群的瓶颈不可能是a和d

3.网络是一种稀缺资源,但是并不是瓶颈。

4.由于大数据面临海量数据,读写数据都需要io,然后还要冗余数据,hadoop一般备3份数据,所以IO就会打折扣。

7. 关于 SecondaryNameNode 哪项是正确的?答案C

a)它是 NameNode 的热备
b)它对内存没有要求
c)它的目的是帮助 NameNode 合并编辑日志,减少 NameNode 启动时间
d)SecondaryNameNode 应与 NameNode 部署到一个节点。

多选题:

8. 下列哪项可以作为集群的管理?答案:ABD

a)Puppet
b)Pdsh
c)Cloudera Manager
d)Zookeeper

9. 配置机架感知的下面哪项正确:答案ABC

a)如果一个机架出问题,不会影响数据读写
b)写入数据的时候会写到不同机架的 DataNode 中
c)MapReduce 会根据机架获取离自己比较近的网络数据
10. Client 端上传文件的时候下列哪项正确?答案B

a)数据经过 NameNode 传递给 DataNode

b)Client 端将文件切分为 Block,依次上传

c)Client 只上传数据到一台 DataNode,然后由 NameNode 负责 Block 复制工作

该题分析:
Client向NameNode发起文件写入的请求。

NameNode根据文件大小和文件块配置情况,返回给Client它所管理部分DataNode的信息。

Client将文件划分为多个Block,根据DataNode的地址信息,按顺序写入到每一个DataNode块中。

11. 下列哪个是 Hadoop 运行的模式:答案ABC

a)单机版
b)伪分布式
c)分布式

12. Cloudera 提供哪几种安装 CDH 的方法?答案:ABCD

a)Cloudera manager
b)Tarball
c)Yum
d)Rpm

判断题:

13. Ganglia 不仅可以进行监控,也可以进行告警。( 正确)

分析:此题的目的是考Ganglia的了解。严格意义上来讲是正确。ganglia作为一款最常用的Linux环境中的监控软件,它擅长的的是从节点中按照用户的需求以较低的代价采集数据。但是ganglia在预警以及发生事件后通知用户上并不擅长。最新的ganglia已经有了部分这方面的功能。但是更擅长做警告的还有Nagios。Nagios,就是一款精于预警、通知的软件。通过将Ganglia和Nagios组合起来,把Ganglia采集的数据作为Nagios的数据源,然后利用Nagios来发送预警通知,可以完美的实现一整套监控管理的系统。

14. Block Size 是不可以修改的。(错误 )

分析:它是可以被修改的Hadoop的基础配置文件是hadoop-default.xml,默认建立一个Job的时候会建立Job的Config,Config首先读入hadoop-default.xml的配置,然后再读入hadoop-site.xml的配置(这个文件初始的时候配置为空),hadoop-site.xml中主要配置需要覆盖的hadoop-default.xml的系统级配置。

15. Nagios 不可以监控 Hadoop 集群,因为它不提供 Hadoop 支持。(错误 )

分析:Nagios是集群监控工具,而且是云计算三大利器之一

16. 如果 NameNode 意外终止,SecondaryNameNode 会接替它使集群继续工作。(错误 )

分析:SecondaryNameNode是帮助恢复,而不是替代,如何恢复,可以查看

17. Cloudera CDH 是需要付费使用的。(错误 )

分析:第一套付费产品是Cloudera Enterpris,Cloudera Enterprise在美国加州举行的 Hadoop 大会 (Hadoop Summit) 上公开,以若干私有管理、监控、运作工具加强 Hadoop 的功能。收费采取合约订购方式,价格随用的 Hadoop 叢集大小变动。

18. Hadoop 是 Java 开发的,所以 MapReduce 只支持 Java 语言编写。(错误 )

分析:rhadoop是用R语言开发的,MapReduce是一个框架,可以理解是一种思想,可以使用其他语言开发。

19. Hadoop 支持数据的随机读写。(错 )

分析:lucene是支持随机读写的,而hdfs只支持随机读。但是HBase可以来补救。HBase提供随机读写,来解决Hadoop不能处理的问题。HBase自底层设计开始即聚焦于各种可伸缩性问题:表可以很“高”,有数十亿个数据行;也可以很“宽”,有数百万个列;水平分区并在上千个普通商用机节点上自动复制。表的模式是物理存储的直接反映,使系统有可能提高高效的数据结构的序列化、存储和检索。

20. NameNode 负责管理 metadata,client 端每次读写请求,它都会从磁盘中读取或则会写入 metadata 信息并反馈 client 端。(错误)

此题分析:

NameNode 不需要从磁盘读取 metadata,所有数据都在内存中,硬盘上的只是序列化的结果,只有每次 namenode 启动的时候才会读取。
1)文件写入
Client向NameNode发起文件写入的请求。
NameNode根据文件大小和文件块配置情况,返回给Client它所管理部分DataNode的信息。
Client将文件划分为多个Block,根据DataNode的地址信息,按顺序写入到每一个DataNode块中。

2)文件读取
Client向NameNode发起文件读取的请求。

21. NameNode 本地磁盘保存了 Block 的位置信息。( 个人认为正确,欢迎提出其它意见)

分析:DataNode是文件存储的基本单元,它将Block存储在本地文件系统中,保存了Block的Meta-data,同时周期性地将所有存在的Block信息发送给NameNode。NameNode返回文件存储的DataNode的信息。
Client读取文件信息。

22. DataNode 通过长连接与 NameNode 保持通信。( )

这个有分歧:具体正在找这方面的有利资料。下面提供资料可参考。

首先明确一下概念:

(1).长连接
Client方与Server方先建立通讯连接,连接建立后不断开,然后再进行报文发送和接收。这种方式下由于通讯连接一直存在,此种方式常用于点对点通讯。

(2).短连接
Client方与Server每进行一次报文收发交易时才进行通讯连接,交易完毕后立即断开连接。此种方式常用于一点对多点通讯,比如多个Client连接一个Server.

23. Hadoop 自身具有严格的权限管理和安全措施保障集群正常运行。(错误 )

hadoop只能阻止好人犯错,但是不能阻止坏人干坏事

24. Slave 节点要存储数据,所以它的磁盘越大越好。( 错误)

分析:一旦Slave节点宕机,数据恢复是一个难题

25. hadoop dfsadmin –report 命令用于检测 HDFS 损坏块。(错误 )

26. Hadoop 默认调度器策略为 FIFO(正确 )

27. 集群内每个节点都应该配 RAID,这样避免单磁盘损坏,影响整个节点运行。(错误 )

分析:首先明白什么是RAID,可以参考百科磁盘阵列。这句话错误的地方在于太绝对,具体情况具体分析。题目不是重点,知识才是最重要的。因为hadoop本身就具有冗余能力,所以如果不是很严格不需要都配备RAID。具体参考第二题。

28. 因为 HDFS 有多个副本,所以 NameNode 是不存在单点问题的。(错误 )

29. 每个 map 槽就是一个线程。(错误 )

分析:首先我们知道什么是map 槽,map 槽->map slotmap slot 只是一个逻辑值 ( org.apache.hadoop.mapred.TaskTracker.TaskLauncher.numFreeSlots ),而不是对应着一个线程或者进程

30. Mapreduce 的 input split 就是一个 block。(错误 )

31. NameNode 的 Web UI 端口是 50030,它通过 jetty 启动的 Web 服务。(错误 )

32. Hadoop 环境变量中的 HADOOP_HEAPSIZE 用于设置所有 Hadoop 守护线程的内存。它默认是 200 GB。( 错误)

hadoop为各个守护进程(namenode,secondarynamenode,jobtracker,datanode,tasktracker)统一分配的内存在hadoop-env.sh中设置,参数为HADOOP_HEAPSIZE,默认为1000M。

33、33. DataNode 首次加入 cluster 的时候,如果 log 中报告不兼容文件版本,那需要 NameNode执行“Hadoop namenode -format”操作格式化磁盘。(错误 )

分析:

首先明白介绍,什么ClusterID

ClusterID

添加了一个新的标识符ClusterID用于标识集群中所有的节点。当格式化一个Namenode,需要提供这个标识符或者自动生成。这个ID可以被用来格式化加入集群的其他Namenode。

二次整理

有的同学问题的重点不是上面分析内容:内容如下:

这个报错是说明 DataNode 所装的Hadoop版本和其它节点不一致,应该检查DataNode的Hadoop版本

 

End.