大数据培训新三板挂牌机构 股票代码:837906 | EN CN
阿里巴巴菜鸟级数据产品经理半年回顾总结篇
干货教程:如何绘制业务流程图(二)
干货教程:如何绘制业务流程图(一)
技术贴:如何在数据库中秘密地查询隐私数据
攻略教程:信息图(infographic)是怎么做出来的?
分析师一定要看!用数据讲故事的五个步骤
技术篇:怎样玩转千万级别的数据?
北漂书生:大数据时代SEO数据如何搜集和分析
干货,从十大问题重新认识并读懂互联网
相似图片搜索、算法、识别的原理解析(下)
相似图片搜索、算法、识别的原理解析(上)
制作信息图时请遵循这10条原则
提高表格可读性的一些技巧,适用于Excel、PPT等数据报表
实用教程:如何让Excel图表更具“商务气质”?
一张数据信息图是这样制作完成的
菜鸟读财报,如何从上市公司财报中挖情报?
北大数据分析老鸟写给学弟们一封信
如何一步一步制作出高品质数据信息图?
总结:海量数据分析处理的十个方法
【实战经验】数据分析师如何了解老板真正想法?
零售业数据分析那些事儿
数据分析时l常用电子表格公式【大全】
用数据来告诉你 上市公司财报的秘密
这12个数据能 帮你搞定淘宝店铺
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(四)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(三)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(二)
首席工程师揭秘:LinkedIn大数据后台是如何运作的?(一)
淘宝网店从激活到挽留,4步走玩转数据营销
文案怎样写才有意思、不空洞、打动人?
入门级扫盲贴:数据分析的步骤有哪些?
关系即数据,论社交媒体的关系转换
数据的力量,苹果教你用数据鄙视竞争对手
谁说文科生不能做数据分析?数据分析入行→技能提升→优势
产品运营数据分析——SPSS数据分组案例
如何追踪iPhone和iPad等移动设备的用户行为数据?
阿里巴巴中国站:用户满意度指标权重计算方法
广告中的AdNetwork、AdExchange、DSP、SSP、RTB和DMP是什么?
信息图制作教程:关于数值的表现
为什么大数据会如此轰动?(值得深度的文章)
多图技术贴:深入浅出解析大数据平台架构
面板数据分析中标准误的估计修正——根据Peterson (2009)的归纳
财务官、投资人、CIO看过来:给企业数据定价
推荐系统中常用算法 以及优点缺点对比
探索Weotta搜索引擎背后的大数据技术
如何识别虚假数据?
为什么我们像驯化小狗那样驯化算法
程序员必须知道的10大基础实用算法及其讲解
电子商务:最影响转化率的九大要素
如何迅速成为一名数据分析师?
想从事大数据、海量数据处理相关的工作,如何自学打基础?
如何用亚马逊弹性MapReduce分析大数据?
译文:机器学习算法基础知识
给hadoop新手的一封信:Hadoop入门自学及对就业的帮助
从入门到精通,我是这样学习算法的
小商家,从老客户身上获取的数据才更有意义
13页PPT讲述:大数据下网站数据分析应用
40页PPT详解:京东大数据基础构架与创新应用
67页PPT解密搜索引擎背后的大技术:知识图谱,大数据语义链接的基石
营销洞察力——10个营销度量指标
技术篇:前端数据之美如何展示?
董飞:美国大数据工程师面试攻略【PPT】
easel:如何制作好的信息图——来自专家的顶级技巧
大数据实操:以3D打印机为例,如何知道卖点有没有市场需求?
大数据建模 需要了解的九大形式
用户画像数据建模方法
从规划开始,公司or企业如何入手和实施大数据?
干货:商品信息数据分析和展现系统的设计与开发
高手教你用Excel制作百度迁徙数据地图
50篇干货:淘宝店/电子商务如何玩转数据分析?
精华索引:大数据实际应用案例50篇
验证最小化可行产品 (MVP) 的 15 种方法
干货:数据分析师的完整知识结构
大数据技术Hadoop面试题,看看你能答对多少?答案在后面
用SPSS做数据分析?先弄懂SPSS的基础知识吧
怎样做出优秀的扁平化设计风格PPT? 扁平化PPT设计手册#3
解答│做大数据过程中遇到的13个问题
40页PPT│社交网络发展的新动力:大数据与众包
以Amazon、豆瓣网为例,探索推荐引擎内部的秘密#1
怎样做出优秀的扁平化设计风格PPT?#2
怎样做出优秀的扁平化设计风格PPT?#1
36页PPT│大数据分析关键技术在腾讯的应用服务创新
如何丰满地做SWOT分析?
【35页PPT】TalkingData研发副总阎志涛:移动互联网大数据处理系统架构
27页PPT|以珍爱网为例,如何构建有业务价值的数据分析系统?
国外数据新闻资源分享
21页PPT重磅发布:Mariana——腾讯深度学习平台的进展与应用
从0到100——知乎架构变迁史
PPT解读:百度大数据质量保障方案探索
45页PPT|大数据环境下实现一个O2O通用推荐引擎的实践
从数据看豆瓣兴衰
深度学习系列:解密最接近人脑的智能学习机器——深度学习及并行化实现(四)
重磅推荐:129页PPT讲述移动时代创业黄金法则 via:腾讯企鹅智酷
重磅推荐:大数据工程师飞林沙的年终总结&算法数据的思考
OpenKN——网络大数据时代的知识计算引擎
大数据下城市计算的典型应用
技术贴:大数据告诉你,如何给微信公众号文章取标题?
你的QQ暴露了你的心——QQ大数据及其应用介绍PPT
如何从企业报表看企业的生存能力?
实用的大数据技巧合集
技术帝揭秘:充电宝是如何盗取你的个人隐私的?
重磅!50页PPT揭秘腾讯大数据平台与推荐应用架构
原创教程:饼图之复合饼图与双层饼图(1)
PPT:大数据时代的设计特点——不了解这个你做不了今天的设计
教程贴:如何用方程式写春联?
原创教程:如何用Excel制作简易动态对比图
深度译文:机器学习那些事
教程帖:数学之美——手把手教你用Excel画心(动态图)
董老师走进斯坦福,聊聊硅谷创业公司和大数据的事儿(附课件PPT下载)
【限时】年度钜献,108个大数据文档PDF开放下载
董飞专栏:大数据入门——大数据相关技术、Hadoop生态、LinkedIn内部实战
亿级用户下的新浪微博平台架构
一张图了解磁盘里的数据结构
浅析数据化设计思维在阿里系产品的应用
美团推荐算法实践
一个P2P创业公司有哪些部门,都是做什么的?
一个P2P平台的详细运营框架是怎样的?
机器学习中的算法——决策树模型组合之随机森林与GBDT
神经网络简史
58页PPT看懂互联网趋势,大数据/物联网/云计算/4G都有了
广点通背后的大数据技术秘密——大规模主题模型建模及其在腾讯业务中的应用(附PPT)
微信红包之CBA实践PPT——移动互联网海量访问系统设计
一文读懂机器学习,大数据/自然语言处理/算法全有了……
搜狐新闻客户端的背后大数据技术原理——推荐系统(PPT)
原创教程:用Excel做动态双层饼图
半小时读懂PMP私有广告交易市场
怎样分析样本调研数据(译)
PPT:支付宝背后的大数据技术——DataLab、Higo的实践及应用
大数据技术人员的工具包——开源大数据处理工具list(限时下载)
计算机视觉:随机森林算法在人体识别中的应用
24页PPT:机器学习——支持向量机SVM简介(附下载)
互联网高手教你如何搜集你想要的信息
深度:对地观测大数据处理、挑战与思考
原创教程:用Excel做饼图之复合饼图与双层饼图(2)
移动大数据时代: 无线网络的挑战与机遇(附pdf下载)
Excel使用技巧——25招必学秘技
【年度热门】加上这些 Excel 技能点,秒杀众人(多图)
原创教程:用Excel做纵向折线图
知识图谱——机器大脑中的知识库
何明科专栏:用数据化的方式解析投资条款
DT时代,如何用大数据分析创造商业价值(23页PPT)
MIT牛人梳理脉络详解宏伟现代数据体系
你的老婆是怎么算出来的?揭秘佳缘用户推荐系统
飞林沙:商品推荐算法&推荐解释
PPT:如何成为真正的数据架构师?(附下载)
开源大数据查询分析引擎现状
董飞专栏:打造数据产品必知秘籍
译文:如何做强大又漂亮的信息图
如何使用Amazon Machine Learning构建机器学习预测模型
如何运用数据协助货架管理(内附26张PPT)
SVM算法
主流大数据系统在后台的层次角色及数据流向
PPT:阿里全息大数据构建与应用
人脸识别技术大总结——Face Detection & Alignment
教程:用Excel制作成对条形图
易观智库:大数据下的用户分析及用户画像(18页PPT附下载)
技术向:如何设计企业级大数据分析平台?
电商数据分析基础指标体系
IBM SPSS Modeler 决策树之银行行销预测应用分析
拓扑数据分析与机器学习的相互促进
基于 R 语言和 SPSS 的决策树算法介绍及应用
用php做爬虫 百万级别知乎用户数据爬取与分析
另类新浪微博基本数据采集方法
以10万+阅读的文章为例 教你做微信公众号的运营数据分析
破解数据三大难题:变现?交易?隐私?
微店的大数据平台建设实践与探讨
阿里巴巴PPT:大数据基础建议及产品应用之道
基于社会媒体的预测技术
人工智能简史
技巧:演讲中怎样用数据说话
马云和小贝选谁做老公?写给非数据人的数据世界入门指南
掘金大数据产业链:上游资源+中游技术+下游应用
原创教程:手把手教你用Excel做多层折线图
销售分析:如何从数据指标发现背后的故事
如何一步步从数据产品菜鸟走到骨干数据产品
也来谈谈微博的用户画像
行走在网格之间:微博用户关系模型
如何拍出和明星一样美爆的自拍照?斯坦福大学用卷积神经网络建模告诉你
运营商如何玩转大数据? 浙江移动云计算和大数据实践(PPT附下载)
大数据分析的集中化之路 建设银行大数据应用实践PPT
腾讯防刷负责人:基于用户画像大数据的电商防刷架构
创业提案的逻辑
友盟分享 | 移动大数据平台架构思想以及实践经验
寻路推荐 豆瓣推荐系统实践之路
“小数据”的统计学
重磅!8大策略让你对抗机器学习数据集里的不均衡数据
小团队撬动大数据——当当推荐团队的机器学习实践
微博推荐架构的演进
科普文 手把手教你微信公众号数据分析
信息图制作的六个注意点
【权利的游戏】剧透新玩法:情理之中?意料之外
推荐系统(Recommender System)的技术基础
核心算法 谷歌如何从网络的大海里捞到针
Quora数据科学家和机器学习工程师是如何合作的
阿里巴巴PPT:大数据下的数据安全
数据建模那点事儿
全民拥抱Docker云–Lhotse系统经验分享
实时股票分析系统的架构与算法
架构师必看 京东咚咚架构演进
什么叫对数据敏感?怎样做数据分析?
推荐系统基础知识储备
刘德寰:数据科学的整合与细分 数据科学的七个危险趋势(视频)
实际工作中,如何做简单的数据分析?
分布式前置机器学习在威胁情报中的应用(附PPT下载)
数据科学 怎样进行大数据的入门级学习?
扛住100亿次请求 如何做一个“有把握”的春晚红包系统?(PPT下载)
从 LinkedIn 的数据处理机制学习数据架构
大数据会如何改变管理咨询公司(I)
优秀大数据GitHub项目一览
生硬的数字和数据新闻:这么近,那么远
经典大数据架构案例:酷狗音乐的大数据平台重构(长文)
揭秘中兴大数据在银行领域的系统部署
基于大数据的用户画像构建(理论篇)
【R】支持向量机模型实现
数据图处处有陷阱?五个例子教你辨真伪
如何用R绘制地图
你确定你真的懂用户画像?
数据模型需要多少训练数据?
【接地气】01 数据报表的颜色怎么配
游戏价值和数据分析新思路
【R】异常值检测
快的打车架构实践
豆瓣还是朋友圈:大数据、新方法和日常问
PPT数据图表,怎么做才好看?
大道至简的数据体系构建方法论
数据的误区及自身业务
新浪微博的用户画像是怎样构建的?
面试干货!21个必知数据科学面试题和答案part1(1-11)
易观智库:中国大数据产业生态图谱2016(附下载)
Airbnb的数据基础架构
50PB海量数据排序,谷歌是这么做的
大数据时代工程师如何应对–今日头条走进硅谷技术讲座
D3.js教学记(下)
D3.js教学记(上)
飞林沙:企业级服务公司如何赚钱?只有平台级产品才有大数据的理论
一个母婴电子商务网站的大数据平台及机器学习实践
7大板块 组成数据分析师的完整知识结构
干货:SaaS领域如何分析收入增长?
学术 | 词嵌入的类比特性有实用意义吗?
6个用好大数据的秘诀
一个数据库外行眼中的微信优化 (附专家补充)
大数据调研,如何实现快全准?
数据大师Olivier Grisel给志向高远的数据科学家的指引
数据堂肖永红:数据交易的是使用权或数据的增值,而不是数据本身(PPT附下载)
淘宝商品详情平台化思考与实践
刘译璟:百分点大数据理念和实践(图文+PPT下载)
如何快速搞定一份看起来还不错的演示文档?
【BABY夜谈大数据】决策树
数据驱动设计:数据处理流程、分析方法和实战案例
美图数据总监:Facebook的法宝,我们在产品中怎么用?
树的内核:量化树结构化数据之间的相似性
拿到用户数据之后,LinkedIn怎么赚钱?
GrowingIO张溪梦:增长黑客的核心 企业应该重视产品留存率(附PPT下载)
[译]Airbnb是如何使用数据理解用户旅行体验的?
微博推荐数据服务代理: hyper_proxy的设计和实现
星图数据谷熠:消费领域DaaS 大数据重构未来商业游戏规则(附PPT下载)
鲍忠铁:TalkingData大数据技术与应用实践(PPT下载)
【干货教材】数据分析VS业务分析需求
九枝兰专访:数字营销的核心—企业如何使用数据管理平台(DMP)进行精准营销
我们的应用系统是如何支撑千万级别用户的
R应用空间数据科学
Excel进行高级数据分析(上)
Excel进行高级数据分析(下)
国内各大互联网公司2.0版技术站点收集
网站数据分析思路导图
大数据分析报表设计开发要素
大数据需要的12个工具 推荐
YARN/MRv2 Resource Manager深入剖析—NM管理
YARN/MRv2 Resource Manager深入剖析—RMApp状态机分析
Hadoop 1.0与Hadoop 2.0资源管理方案对比
Hadoop 2.0中单点故障解决方案总结
Hadoop 2.0 (YARN)中的安全机制概述
Hadoop 新特性、改进、优化和Bug分析系列1:YARN-378
Hadoop 新特性、改进、优化和Bug分析系列2:YARN-45
Hadoop 新特性、改进、优化和Bug分析系列3:YARN-392
Hadoop版本选择探讨
探究提高Hadoop稳定性与性能的方法
《Effective C++》读书笔记(第一部分)
Hadoop分布式环境下的数据抽样
Hadoop计算能力调度器算法解析
如何编写Hadoop调度器
数据结构之红黑树
Hadoop pipes设计原理
《C++ Primer plus》学习笔记之”类”
《C++ Primer plus》学习笔记之”类继承”
《C++ Primer plus》学习笔记之”C++中的代码重用”
《C++ Primer plus》学习笔记之”异常”
《C++ Primer plus》学习笔记之”RTTI”
Hadoop pipes编程
Hadoop Streaming高级编程
《C++ Primer plus》学习笔记之”标准模板库”
《C++ Primer plus》学习笔记之”输入输出库”
Linux Shell 命令总结
算法之图搜索算法(一)
awk使用总结
素数判定算法
《C++ Primer plus》学习笔记之“函数探幽”
使用Thrift RPC编写程序
如何在Hadoop上编写MapReduce程序
怎样从10亿查询词找出出现频率最高的10个

移动大数据时代: 无线网络的挑战与机遇(附pdf下载)

于2017-04-01由小牛君创建

分享到:


大数据

移动大数据时代: 无线网络的挑战与机遇

张平, 崔琪楣 侯延昭, 徐瑨 北京邮电大学, 北京 100876

2014-11-03 收稿, 2014-12-19 接受, 2015-01-20 网络版发表 国家自然科学基金(61471058, 61421061)和北京高等学校青年英才计划(YETP0429)资助

摘要:

随着移动互联网、云计算、物联网、机器类型通信等新兴信息通信技术的飞速发展, 信息社会进入了网络化的大数据时代. 快速普及的智能化移动终端应用助推了全球移动数据流量的大幅度增长. 在移动大数据时代, 海量数据、业务类型演进、数据多样化、数据空-时域分布不均匀等特征给无线网络带来了严峻的挑战. 为了应对挑战, 一方面, 无线网络从新频谱拓展、传输技术、智能立体化组网等多维度进行演进以满足大数据传输与应用的需求; 另一方面, 移动大数据作为一种新的生产要素改变着人们认知网络的方法, 无线网络可以充分借鉴互联网数据挖掘的理论与方法, 实现网络的灵活部署、无线资源的优化配置和低能耗绿色通信.

当今, 移动互联网、云计算、物联网、机器类型通信等新兴信息通信技术的飞速发展导致数据流量的爆炸式增长和数据结构类型的高度复杂化, 信息社会进入了网络化的大数据(big data)时代[1,2]. 宏观上大数据即指海量的数据; 从微观上定义, 大数据是指需要通过快速获取、处理、分析以从中提取有价值的海量、多样化的交易数据、交互数据与传感数据等数据, 其主要特征包括:海量(volume)、类型繁多(variaty)、增长迅速(velocity)、价值巨大(value)等[3].随着智能手机、平板电脑等智能化终端的快速普及,移动数据流量和信令呈现非线性指数增长趋势, 将逐渐成为大数据的主体, 这对无线网络的演进与发展产生重要的影响.

在移动大数据时代下, 无线网络的挑战与机遇并存. 一方面, 未来无线网络需具备承载大数据的能力; 另一方面, 有效地利用海量数据中的离散信息可充分实现网络的潜在价值. 基于上述考虑, 本文介绍了移动大数据的主要特征, 分析了其给无线网络带来的主要挑战和发展机遇.

1 移动大数据的主要特征

1.1 海量数据

在信息社会, 人、机、物之间的高度融合与互联互通激发了海量数据的涌现 . 思科统计显示 [4],到2013年底, 全球移动数据流量为1.5 EB/月, 接近2000年全球互联网总流量的18倍, 预计到2018年总流量将增长至15.9 EB/月(图1). 同时, 快速普及的智能化移动终端应用助推了全球移动数据流量的大幅度增长. 以智能手机为例, 截止到2013年底, 智能手机的数量仅占全球在用手机总量的27%, 但其产生的流量占全球手机总流量的95%(每部智能手机的移动数据流量为529 MB/月).

1.2 业务类型演进

随着移动互联网应用的发展, 传统蜂窝网络所承载的业务正在由传统语音、短信向多样化的具有互联网特征的新业务类型拓展. 例如, 微信等即时通讯类业务、社交网站和搜索引擎等交互类业务、在线视频和在线音乐等流媒体业务等. 新业务继承互联网的特征, 而传统无线通信网在通信机制、互联互通规则等方面与互联网有完全不同的设计理念, 难以适应新业务的需求.

例如, 以即时通信类业务为代表的小包持续性突发实时在线业务类型, 其包含频繁的文本、图像信息和周期性的pings, 这导致无线网络在连接和空闲状态间进行频繁的切换, 不仅增加设备的能耗, 还造成严重的信令开销, 使得资源利用率十分低下. 然而, 在移动互联网业务中, 即时通信业务的比例日益增高. 如图2所示[3], 截至2014年6月底, 我国手机即时通信网民数为4.59亿, 比2013年底增长了2842万, 半年增长率达6.6%; 手机即时通信使用率为87.1%, 比2013年底提升了1个百分点.

大数据

1.3 数据多样化

海量的在线数据, 将引入新的计算、存储方式, 网络业务将呈现不同的特征和属性, 而移动数据类型更加繁多, 包括结构化数据、半结构化数据和非结构化数据. 现代移动互联网产生了大量非结构化数据, 包括各类视/音频信息、办公文档等, 其在数据类型中所占比例呈现升高态势. 根据Gartner Group统计, 如今80%的数据为非结构化数据[5], 而移动互联网中这一比例已达到95%以上. 大量非结构化的数据随机散落于不同的智能终端中, 其数据格式互不兼容, 读取和存储具有随机性, 这对于系统的传输带宽、控制信令开销、资源分配等带来了严峻挑战.

大数据

图22013-12~2014-06即时通信/手机即时通信用户规模及使用率[3]Figure 2IM/mobile phone IM subscribers and usage[3]

另一方面, 在无线接入网络侧可获得多种特征的大数据. 在物理层可获得信号强度、信噪比(SNR)、用户接入位置(中心/边缘)、多普勒(Doppler)速度等具有典型无线特征的数据信息, 在媒体接入控制层(MAC)可获得用户级别、请求速率、调度优先级、单次接入时延(如QQ和下载应用)等具有服务质量特征的数据信息, 在应用层可获得用户业务习惯(如平均通话时长)、用户感知体验(如网络容忍度)、用户套餐(如付费习惯、续约习惯、消费分析)等具有用户行为特征的数据信息. 如何有效地利用海量多样化的大数据, 挖掘其价值服务于网络是未来值得研究的重要内容.

1.4 数据的空-时域大动态变化

用户的随机趋同性使得网络的业务密度分布在空-时域上呈现不均匀的特性, 热点区域业务量占70%[2]. 图3是来自于某移动运营商现网实测话务数据样本的业务分布图, 数据流量的密度呈现空-时域非均匀特性. 空间域上, 城市中心的局部地区业务量超大, 而城市边缘地区数据业务量却低于平均水平; 时间域上, 数据流量的变化剧烈, 工作时间商务区数据流量大而居民区数据流量小, 休息时间则刚好相反. 数据流量在空-时域上的大动态变化使得无线网络在站点部署、热点覆盖、资源分配等问题上的灵活性和智能性需求更加迫切.

大数据

2 移动大数据对无线网络的挑战

如前所述, 移动大数据的涌现对无线网络提出了更高的需求: 海量数据要求网络具有更大的承载能力; 业务类型演进和数据多样化要求资源管理策略更加智能高效; 数据空-时域分布不均匀要求网络部署更加合理等. 为应对移动大数据的冲击, 无线网络节点不再扮演单纯转发的角色, 而要同时具备计算、存储、分析、决策、动态和智能化的功能. 因此, 移动大数据时代的到来, 在网络部署、资源管控、移动通信安全、网络能耗等多方面对传统无线网络提出了诸多挑战.

2.1 网络部署

移动数据流量和信令均呈非线性高速增长, 给无线接入网络带来巨大压力. 超密集化的小小区(small cell)部署被认为是应对海量数据增长和数据分布不均匀的最有效手段[6], 小小区增强已成为3GPP LTE-Advanced Release 12中最重要的候选技术[7~9].

与此同时, 受限于低频范围内宽带连续频谱资源极度匮乏, 未来5G网络将不得不向更高频段扩展. 由于小小区部署主要针对室内热点区域, 高频段无线信号传播的特征(高损耗、低穿透)恰好可以削弱小小区与其他小区之间的干扰. 因此, 室内高频段小小区部署将是未来超密集化网络部署的关键问题.

严重的信号衰落及信号传播通常在视距范围内, 使得室内小区形状呈现“准”确定性和小区边缘锐利化的特征, 这对室内网络覆盖规划引入了难题. 室内节点的密集程度主要受建筑物布局的影响, 若以最小化室内无线节点为网络规划目标, 锐利的小小区边缘会使问题建模异常复杂.

2.2 资源管控

新型业务类型的不断涌现, 数据多样化和流量空-时域大动态变化给传统资源管理体系带来了新的难题. 目前的资源管控策略是既定且自发的, 资源分配方式依赖于网络的当前负载和拥塞状态、终端业务请求等, 使得全局的资源管控效率较低: 从资源管控的目标看, 以网络吞吐量为主体的优化目标无法实现基于大数据业务归类的差异化控制目标, 导致管控策略灵活性低, 用户体验差; 从资源管控的约束条件分析, 数据多样化和需求异质化导致资源管控的维度增加且各维度间不对称, 资源管控优化策略的制定和优化目标的求解变得异常复杂. 其次, 对于继承了互联网设计理念的新业务类型(QQ、微信等), 在当前的移动网络中针对各种不同业务(如不同的传输速率、业务达到间隔、时延等)只设计了一种面向连接的信令/控制机制, 对于突发性业务会导致相对较高的信令开销; 同时, 相对于移动互联网新业务的不断创新, 资源管控的智能化进程滞后, 使得用户附着度较低. 最后, 传统移动网络资源管控主要是基于以小区为中心的均匀设计理念, 且总是针对网络最差的状态进行宏观的资源配置, 这与实际系统中海量业务空-时域的不均匀分布特征不符, 网络资源管理须从以小区为中心向以用户体验为中心、以数据为中心转变.

2.3 数据安全性

数据安全[10,11]一直是无线网络中备受关注的核心问题. 在移动大数据时代, 用户接入更加频繁、灵活. 当用户在QQ, Facebook等社交网络上分享信息时, 大量个人信息不仅存储在终端里, 也分散在互联网上. 恶意用户利用大数据分析技术处理这些海量数据, 更容易窃取他人隐私, 甚至可以针对用户进行全景观察, 通过对用户所有数据的分析了解各因素之间的关系, 判断用户的状态、预测用户行为[12]. 除了用户隐私安全之外, 数据的访问控制和可信度也面临挑战. 用户属性和访问需求的多样化使保密权限设置更加困难. 数据源伪造(伪基站、钓鱼WiFi等)、数据篡改、数据窃听和数据失真造成数据可信度降低.

与有线通信相比, 无线通信固有的广播特性和传输媒介的开放性使其更易受到窃听等安全攻击. 而且, 未来无线网络呈现网络架构扁平化、信息交互IP化、异构融合等趋势, 一方面为无线通信带来更多来自无线网络以及互联网的安全威胁, 另一方面, 安全攻击更容易扩散并产生较大影响. 随着大数据分析能力的增强, 单纯依赖高层安全措施已不足以保障无线通信安全, 特别是网络节点数目增多、随机性增强使高层安全措施的部署愈发复杂和困难. 因此, 应充分结合无线通信的基本特征, 利用信道编码、信号处理等技术从物理层入手搭建无线通信的第一道安全屏障, 即物理层安全[13]. 该技术利用多天线[14]、人工噪声[15]、多点协作[16]等措施保障无线传输安全, 但是, 将消耗部分网络资源, 牺牲系统容量、能效性能. 因此, 安全性与其他性能指标的合理折中也是亟待考虑的问题.

2.4 高能耗

在全球能源匮乏和建设资源节约型社会的背景下, 高能耗问题已经成为制约信息通信行业发展的瓶颈问题之一. 移动网络的能耗主要分为两部分:网络侧能耗(图4)和移动终端能耗. 其中, 前者所占比重较大, 其能耗在不同层面的分布比例如图4所示[17], 基站是最主要的耗能部分, 其能耗占总能耗的一半以上. 据统计, 中国通信网基站的年消耗电量超过200亿度, 2012年中国联通缴纳的电费超过了其员工薪酬及福利开支的1/3).

在大数据背景下, 用户在享受QQ、微信、社交网站、搜索引擎、在线视频等新业务的同时, 无论在网络侧还是终端侧均需要消耗更多的计算、存储、能量等资源. 在无线接入网络侧, 超密集化的网络站点部署会显著加剧高能耗问题[18]. 在终端侧, 由于终端能耗在总耗能中的比例较低, 在过去的几十年, 终端能耗不被重视, 终端节能技术主要考虑如何延长其待机时间. 然而, 随着智能终端的迅速增长, 今天已步入后摩尔时代[19], 多样化的业务应用增加了智能终端负载与日平均使用率, 这导致移动终端能耗成为迫切解决的关键难题.

3 移动大数据对无线网络带来的机遇

为了应对移动大数据给无线网络带来的前述挑战, 无线网络将从资源、传输、组网3个方面不断演进, 以满足用户对传输速率和业务质量的更高要求. 例如, 挖掘毫米波频段、通过认知的方式提高频谱资源的利用率; 引入新的传输技术, 通过大规模天线、同时同频全双工及新型编码调制方案等提高系统的传输速率; 组建智能立体化网络, 实现不同应用场景下的人与人、人与物、物与物的立体化接入.

与此同时, 快速地从价值密度低的海量数据中分析提炼出有效信息能进一步优化无线网络. 初期的无线网络演进, 以提升网络整体的容量为目标, 是一种以网络为中心的演进思路; 随着移动通信的发展, 用户的主观体验成为移动网络优化的主要目标, 网络将从以网络为中心向以用户为中心演进; 而随着大数据时代的到来, 海量数据已经成为移动网络的核心财富, 使得无线网络向着以数据为中心的方向发展.

3.1 基于大数据挖掘的网络部署

如前所述, 海量的移动数据具备较高的空-时变化特征, 传统固定的移动网络部署无法有效匹配某一特定区域内的流量与负载特征, 超密集化的小小区部署也无法实时适配业务需求的动态变化, 从广义角度而言, 移动大数据的出现需要无线网络部署由静态转变为动态、由固定配置转变为灵活配置. 为解决此问题, 中国移动提出了C-RAN(centralized, co-operative, cloud-RAN)架构[20], 将多个基带汇聚形成大覆盖下的“大基站”, 多个覆盖区域内的无线射频单元共享基带设备和资源, 可实现计算资源的按需有效分配. 这在一定程度上体现了以数据为中心进行网络部署的思想. 进一步地, 以SDN(software defined network)和NFV(network function virtualiza-tion)为代表的无线虚拟化技术能够实现基于业务特征的网络协议动态部署[21], 通过对网络节点抽象和统一调配, 网络的部署和管控更加灵活.

大数据

与传统的网络部署方式不同, 在以数据为中心的网络动态部署中, 移动大数据充当决策者或主导者的作用. 数据的多维特征决定了节点和协议的部署方式, 这有助于无线网络拓扑结构的优化, 业务特征的动态匹配, 并能提高无线网络的整体资源利用水平.

3.2 基于大数据挖掘的无线网络资源精准投放

海量数据在空-时域分布不均匀的特性对无线网络中的资源调度与分配提出了更高的要求, 对大数据中蕴含的抽象信息进行分析和归纳, 挖掘规律性并预测业务走势, 有针对性地进行资源分配, 能为未来无线网络提供新的发展契机.

首先, 基于数据挖掘的聚类分析[22]能有效完成相同特性的小区聚类, 便于针对不同特性的小区进行特定的资源分配, 如基于经纬度、网络覆盖和业务分布特征进行小区聚类, 从而指导资源精准投放和业务推送.

其次, 随着移动数据业务用户数量的增多和需求的差异化, 用户出现等级分化, 无线网络中的策略控制与计费(PCC)方式需进一步考虑用户的匹配性, 从而制定更合理的资源分配方式以适配不同层级的用户体验. 大数据可以应用于PCC, 通过分析用户特性、业务特性以及对用户的行为习惯进行预测, 从而对资源进行合理的分配与控制, 提高PCC的效率, 提供差异化服务, 提升无线网络智能管控水平.

再次, 海量数据挖掘能够实现以用户体验(QoE)为导向的资源精准投放. 未来无线网络对QoE的研究需兼顾环境因素、用户因素及服务因素, 考虑混合多业务场景下的个性化资源分配和管理. 对QoE的评价方法也不仅仅限于客观评价或主观评价, 伪主观评价因既有主观评价与用户感知一致的特点, 又有客观评价方法简便、可实时应用、可移植的优势, 从而成为更贴合用户需求的评价方法[23], 但其所需要的数据量远高于前两种. 基于大数据的海量数据分析能为有效评价用户体验提供充分的信息, 从而有力支撑伪主观评价的QoE评价体系.

3.3 基于大数据挖掘的低能耗绿色通信

通过对移动大数据的分析, 可以获取用户行为习惯、业务特征、移动性等相关信息, 并在此基础上对用户行为趋势做出预测, 从而为无线网络低能耗的绿色通信提供重要参考依据.

基于大数据的分析结果, 网络侧可以更精准地掌握不同地理区域的用户分布及业务需求, 完成多样化基站的智能部署, 从而有效实现匹配用户业务需求的动态资源分配; 结合用户的移动性等信息(如位置信息、移动速度、移动方向等)实现超密集异构网络中不同层级基站的动态激活与休眠、资源共享、协作传输等, 从而降低网络整体能耗, 提高传输效率.

与此同时, 终端侧可以基于自身业务特性和行为习惯, 选择合适的接入网络, 辅助优化网络间协作; 针对具有相似特征的业务需求或地理位置临近的终端组, 还可以通过终端间直接通信(D2D)的方式完成信息交互与推送, 从而节省网络资源, 降低发射功率, 实现低能耗通信.

4 结论

移动大数据时代, 无线网络在资源管控、数据安全、网络能耗方面面临着新的挑战. 但移动大数据是友好可控的, 是无线通信发展的助推剂, 给无线通信带来了新的发展机遇. 无线网络可以充分借鉴互联网数据挖掘的理论与方法, 实现网络的灵活部署、无线资源的优化配置和低能耗绿色通信. 同时, 移动运营商可充分利用自身的数据优势, 充分挖掘大数据的隐性价值, 不断提升业务营销水平和服务质量, 实现跨领域融合, 更多的服务于科技进步和国家政策等方面.

参考文献

1 Li G J. Scientific value of big data research (in Chinese). China Comput Soc Newslett, 2012, 8: 8–15 [李国杰. 大数据研究的科学价值. 中国计算机学会通讯, 2012, 8: 8–15]

2 Li G J, Cheng X Q. Big data research: Key strategic areas for future technological and economic social development—Status and scien-tific consideration of big data (in Chinese). Bull Acad Sci, 2012, 6: 647–657 [李国杰, 程学旗. 大数据研究: 未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考. 中国科学院院刊, 2012, 6: 647–657]

3 The 34th Statistical Report of the Development of Internet in China (in Chinese). China InternetNetwork Information Center, 2014 [第34次中国互联网络发展状况统计报告. 中国互联网络信息中心, 2014]

4 2013–2018 Global Mobile Data Traffic ForecastUpdate (in Chinese). Cisco VisualNetworking Index (VNI), 2013 [2013~2018年全球移动数据流量预测更新. 思科视觉网络指数, 2013]

5 Li W, Lang B. A tetrahedral data model for unstructured data management. Sci China Inf Sci, 2010, 53: 1497–1510

6 Andrews J G, Buzzi S, Wan C,et al. What will 5G be?IEEE J Sel Area Comm, 2014, 32: 1065–1082

7 Scenarios and requirements for small cell enhancements for E-UTRA and E-UTRAN (Release 12), 3GPP, TR 36.932 v12.1.0, 2013

8 Small cell enhancements for E-UTRA and E-UTRAN—Physical layer aspects, 3GPP, TR 36.872, 2013

9 Study on Small Cell enhancements for E-UTRA and E-UTRAN—Higher layer aspects, 3GPP, TR 36.842, 2013

10 Feng W. The opportunities and challenges for information security in the era of big data (in Chinese). Chin Tech Inv, 2012, 34:49–53 [冯伟. 大数据时代面临的信息安全机遇和挑战. 中国科技投资, 2012, 34: 49–53]

11 Feng D G, Zhang M, Li H. Big data security and privacy protection (in Chinese). Chin J Comput, 2014, 37: 246–258 [冯登国, 张敏, 李昊. 大数据安全与隐私保护. 计算机学报, 2014, 1: 246–258]

12 Wang L, Meng X F. An overview of privacy protection ofposition big data (in Chinese). J Softw, 2014, 4: 693–712 [王璐, 孟小峰. 位置大数据隐私保护研究综述. 软件学报, 2014, 25: 693–712]

13 Wyner A. The wire-tap channel. Bell Sys Tech J, 1975, 54: 1355–1387

14 Oggier F, Hassibi B. The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inform Theory, 2011, 57: 4961–4972

15 Karpovsky M, Wang Z. Design of strongly secure communication and computation channels by nonlinear error detecting codes. IEEE Trans Comput, 2014, 63: 2716–2728

16 Zhang J, Gursoy M C. Collaborative relay beamforming for secrecy. In: Proceeding of 2010 IEEE International Conference on Commu-nications (ICC2010). Cape Town: IEEE, 2010. 1–5

17 Chung P J. Green radio-the case for more efficient cellular base stations (slides). UK-Taiwan ICT Workshop: Smart & Green Communi-cations, 2009

18 Takaishi D, Nishiyama H, Kato N, et al. Towards energy efficient big data gathering in densely distributed sensor networks. IEEE Trans Emerg Topics Comput, 2014, 2: 388–397

19 Zhang Q W. How to deal with the challenges of traffic in data backbone network (in Chinese). Chin Manage Inform, 2012, 15: 73–74 [张庆武. 如何应对数据骨干网流量的挑战. 中国管理信息化, 2012, 6: 73–74]

20 China Mobile Research Institute. C-RAN Radio Access Network Evolution to Green: White Paper (in Chinese). 2010 [中国移动通信研究院. C-RAN 无线接入网绿色演进: 白皮书. 2010]

21 Shi F, Wu H J. Trends of new intelligent pipeline technology based on SDN and NFV (in Chinese). Telecomm Net Tech, 2013, 3: 1–4[史凡, 吴宏建. 基于SDN和NFV的新型智能管道技术发展趋势. 电信网技术, 2013, 3: 1–4]

22 Tan Y, Wang H, Zhou Q H. Research of clustering algorithm in data mining (in Chinese). Net Sec Tech App, 2014, 1: 65–66 [覃艳, 王洪, 周全华. 数据挖掘中聚类算法的研究. 网络安全技术与应用, 2014, 1: 65–66]

23 Lin C, Hu J, Kong X Z. An overview of QoE-based modeling and evaluation methods (in Chinese). Chin J Comput, 2012, 35: 1–15 [林闯, 胡杰, 孔祥震. 用户体验质量(QoE)的模型与评价方法综述. 计算机学报, 2012, 35: 1–15]

文章首发为“科学通报”;

文档下载:移动大数据时代%3A 无线网络的挑战与机遇.pdf

End.