位置:首页 > 【小牛学堂原创】kafka入门教程 一 >

【小牛学堂原创】kafka入门教程 一

作者:小牛君|发布时间:2017-06-07

小牛学堂的课程大纲最近进行了再一次升级,并且同时推出Java大数据平台开发班、Python爬虫与数据挖掘班、Spark项目班、Spark大神班、机器学习算法实战班、BI数据分析实战班, 目前这类人群凤毛麟角,导致这个行业的平均薪资极高,为此小牛学堂集合了行业的诸多大牛开设对应班级,为想学习的同学提供机会!
如果想了解详细情况,请联系 今日值班讲师 或者直接加入千人QQ群进行咨询:210992946

以下是本文正文:


1.   kafka概念

1.1.  为何使用消息系统

1.1.1.解耦

在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口。这允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

 

1.1.2.冗余

有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的"插入-获取-删除"范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。

 

1.1.3.扩展性

因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。扩展就像调大电力按钮一样简单。

 

1.1.4.灵活性 & 峰值处理能力

在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见;如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

 

1.1.5.可恢复性

系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

 

1.1.6.顺序保证

在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。Kafka保证一个Partition内的消息的有序性。

 

1.1.7.缓冲

在任何重要的系统中,都会有需要不同的处理时间的元素。例如,加载一张图片比应用过滤器花费更少的时间。消息队列通过一个缓冲层来帮助任务最高效率的执行———写入队列的处理会尽可能的快速。该缓冲有助于控制和优化数据流经过系统的速度。

 

1.1.8.异步通信

很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

 

1.2.  kafka组件

1.2.1.Broker

Kafka集群包含一个或多个服务器,这种服务器被称为broker

1.2.2.Topic

每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)

1.2.3.Partition

Parition是物理上的概念,每个Topic包含一个或多个Partition.

1.2.4.Producer

负责发布消息到Kafka broker

1.2.5.Consumer

消息消费者,向Kafka broker读取消息的客户端。

1.2.6.Consumer Group

每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。

 

1.3.  Kafka拓扑结构

如上图所示,一个典型的Kafka集群中包含若干Producer(可以是web前端产生的Page View,或者是服务器日志,系统CPUMemory等),若干brokerKafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干Consumer Group,以及一个Zookeeper集群。

Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalanceProducer使用push模式将消息发布到brokerConsumer使用pull模式从broker订阅并消费消息。

 

1.3.1.Topic & Partition

 

Topic在逻辑上可以被认为是一个queue,每条消费都必须指定它的Topic,可以简单理解为必须指明把这条消息放进哪个queue里。为了使得Kafka的吞吐率可以线性提高,物理上把Topic分成一个或多个Partition,每个Partition在物理上对应一个文件夹,该文件夹下存储这个Partition的所有消息和索引文件。

若创建topic1topic2两个topic,且分别有4个和5个分区,则整个集群上会相应会生成共9个文件夹(本文所用集群共3个节点,此处topic1topic2 replication-factor均为2),如下图所示。

 

 

 

 



了解更多详情请联系 今日值班讲师 或者直接加入千人QQ群进行咨询:210992946

分享到: